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Abstract
We describe the construction and operation of three low-cost schlieren imaging
systems that can be fabricated using surplus optics and 80/20, an aluminium
extrusion based construction system. Each system has a different optical
configuration. The low cost and ease of construction makes these systems
highly suitable for high-school and undergraduate laboratories. Undergraduate
students responded enthusiastically to the experience of assembling and
operating these systems. This experience also served as an introduction to
issues in optical design, helping the students gain an intuition for geometrical
optics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Schlieren imaging is a technique used to visualize variations in the optical density of a medium.
It is a research tool as well as a popular demonstration experiment. In an undergraduate
laboratory course, it can form the basis for a number of elegant experiments of varying
degrees of sophistication [1–13]. Our aim in writing this paper is twofold. First, we describe
the construction of three low-cost schlieren imaging systems, including custom-built optical
mounts, that were made using 80/20, a modular aluminium framing system [14]. Second, we
describe their potential for use as demonstration experiments in a high-school or undergraduate
science laboratory.

Our laboratory typically employs a large number of undergraduates each year who assist
in almost all of the experimental projects being carried out [15]. Assigned to this project were
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two undergraduates (JK and TS, a final year and a third year undergraduate, respectively),
and a recent high-school graduate (RJ), who spent a summer working on this project. Two of
the three students had little prior experience conducting independent research. We (VG and
MJZH) found that students responded enthusiastically to participating in a real and open-ended
research project where ‘the answers’ were not known to any of us. The experience highlighted
the strong positive effect that working on a real-world research problem can have on students
who are just beginning their study of science.

The work was motivated by our laboratory’s efforts to understand how mammals,
specifically rats, track odour plumes to their source. This is important both from the point
of view of fundamental biology, and also for the design of biologically inspired odour source
locating robots that can be used for hazardous tasks such as locating chemical leaks or detecting
land mines. We aimed to observe with high speed video cameras how rats sniffed at an odour
plume and located its source. One way to visualize an odour plume is to seed the flow with
small particles that scatter light and thus make the flow visible [16]. However, this technique
has two drawbacks. First, it requires expensive laser sources to generate the laser light sheet
that scatters off the seed particles. Second, because the particles provide the animals with
visual cues, the search is no longer purely olfactory. Therefore, we decided instead to use
schlieren imaging to view the path of the odour plume. By embedding the odourant in a gas
such as helium or carbon dioxide, which have refractive indices that are different from air, the
odour plume can be imaged without providing visual cues to the animal.

2. Background

Schlieren effects are familiar to us all; we have all seen shimmering mirages on a hot road, or
the optical distortions caused by the hot air emerging from an aircraft jet engine. The word
schliere (plural schlieren) comes from Old German, where it means bits or pieces. In optics, a
schliere is a region where the refractive index is different from that of the surrounding medium,
causing the light ‘rays’ passing through that region to be refracted.

In 1665 Robert Hooke made the first known study of these refractive index variations. In
his book Micrographia [17] Hooke set down in observation LVIII his study of such phenomena,
and his conclusions that ‘the true cause of all these phenomena is from the inflection, or
multiplicate refraction of those rays of light’ that are passing through ‘a medium whose parts
are unequally dense.’ However, schlieren imaging as it is practised today is based largely on
the techniques first invented by the German physicist August Toepler [18].

Since the time of Hooke’s observations, schlieren imaging has evolved into a precision
tool for visualizing variations in optical density, especially in fluid flows, and is applicable
in any situation where the flow is accompanied by a change in refractive index. With some
imagination, many flow fields can be manipulated to make them amenable to schlieren imaging
[19]4.

3. 80/20—the industrial erector set

80/20 is the brand name of an extremely versatile and fairly inexpensive system of aluminium
extrusions. These extrusions can be joined to one another in different ways with a variety of
connectors called joining plates. This flexibility allows the user to be imaginative and construct

4 This book is encyclopædic in its description of schlieren imaging and is easily the most comprehensive reference
available, with a vast bibliography. For the schlieren researcher or hobbyist, there is no better book to begin with.
The book also contains a very large number of schlieren images of various phenomena, illustrating the versatility of
the technique.
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Figure 1. 80/20 assembly. Figure demonstrates how 10 series T slotted rods are connected to a
‘joining plate’. Rods are classified according to their cross-sectional area. A 1010 (1 × 1 inch2)
and 1020 (1 × 2 inch2) rod are shown.

a number of fairly precise and extremely rugged structures. The 80/20 product range consists
of four different ‘series’ of components [14], but for our apparatus, the 10 series was more
than adequate.

Figure 1 shows two examples of 10 series extrusions along with a 90◦ joining plate,
and demonstrates how 80/20 components are connected together. The extrusions within a
series are labelled according to their cross-sectional areas, with 12 different cross-sections
available in the 10 series. The figure shows examples of a 1010 and a 1020 extrusion from
the 10 series. 1010 denotes a rod with a 1 inch2 cross-sectional area (shown on the right in
the figure), while 1020 is a 1× 2 inch2 cross-section. We have found the 10 series range
to be ideally suited to building many simple optical mounts and assemblies. The 10 series
components have the added advantage that their bolt-hole spacing is compatible with that of
the standard 1 inch spacing found on optical tables. Thus, 10 series assemblies can easily
be combined with existing experiments.

4. Some optical components

Basic optical components, even simple lens and mirror mounts, are often expensive. The
optical mounts we constructed were built to hold large, non-standard size mirrors and lenses,
and cost considerably less than commercially available parts of the same size. The only
machining required was to cut the 80/20 rods to size. Table 1 provides a list of parts used to
construct these components.

Figures 2 and 3 show lens mounts for a 3 inch diameter achromatic lens and a 6 inch
diameter plano-convex lens respectively, along with exploded views to demonstrate how the
components are assembled. Both these lenses are non-standard sizes for which commercially
manufactured mounts are difficult to find. The ends of the extrusions can also be covered with
‘end caps’, the yellow covers seen in figure 3, which add a professional finish.

Figure 4 shows front and back views of a mount for a 4.5 inch diameter concave mirror
along with an exploded view. With some machining, more complicated kinematic mounts
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Figure 2. Mount for 3 inch diameter achromatic condenser lens.

Figure 3. Mount for 6 inch diameter schlieren field lens (see figure 6(a)).

Table 1. List of components used to construct the optical mounts shown in figures 2–5. Part
numbers and quantities needed for each of the mounts can be determined from the respective
figures and using the online catalogue available at www.8020.net. The total cost of the items used
was less than 14 euros for any of the mounts.

Part number and description

1010 1010 rod
4081 5 hole L joining plate
4107 2 hole joining strip
4164 4 hole 60◦ joining plate
2015 1010 end cap
4265 2 hole slotted inside corner
4128 12 hole 90◦ joining plate
1030 1030 rod
4138 8 hole inside gusset corner
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Figure 4. Front and back views of mount for 4.5 inch diameter mirror. Small pieces of soft rubber
are used to cushion the mirror at the three points where it is held by the mount.

Figure 5. A simple mount for a lamp and a filter holder. The filter is a square, 2 inches on a side.

capable of tilting about multiple axes can be made. We did not attempt this, but helpful hints
can be found in the excellent paper by Quericoli et al [20].

Figure 5 shows a photograph of a holder for a projection lamp (the light source for the
schlieren system), and a simple filter holder. The entire schlieren system was set up on a long
1030 rod, which can easily be used as an optical bench (figure 7).

In all these figures, the essential simplicity of the 80/20 system can clearly be seen. None
of these components takes more than 10 min to assemble, once the design is decided upon.
To save time, we found it convenient to have a ‘toy-chest’ of commonly used 80/20 parts and
extrusions always on hand to rapidly try out new designs and ideas.

Finally, we note that the large optical mounts described in this section may be particularly
useful for demonstration experiments. Demonstration experiments must be large in size
because they are viewed by many students at the same time, but do not generally require
precision tolerances. The 80/20 system provides an easy, low-cost method to construct these
types of large optical mounts.
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(a)

(b)

(c)

Figure 6. Schlieren imaging configurations: (a) a two-lens, in-line system, (b) a two-mirror, Z-type
system and (c) a single mirror system. The test region is shown hatched in all figures. Typical ray
paths imaged by the camera are shown in red.

5. Three different schlieren imaging systems

Three schlieren imaging systems were constructed, each with a different optical configuration,
which are shown in figure 6. Images were captured by a low-cost, 8-bit CCD camera
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Figure 7. The final single mirror schlieren setup (figure 6(c)). The knife edge is seen mounted on
a translation stage. The pinhole has been moved further away from the diffuser for clarity. During
operation, the diffuser is placed as close to the pinhole as possible.

(SuperCircuits B/W C-Mount PC-242C). Using a T connector, the camera output was sent to
a monitor for real-time viewing and also saved to a disc using a DVD recorder (figure 6(a)).
The saved data was processed using Adobe PremiereTM (v. 6.0) and MatlabTM(v. 7.0).

Our first prototype system was a very simple, in-line, lens based system (figure 6(a)). To
increase the size of the test region, we used large, 6 inch diameter, lenses (f = 50 cm) that
we obtained from a surplus optics retailer [21]5. While the setup was very easy to align and
operate, the image quality was very poor, with severe chromatic aberration. Chromatic
aberration can of course be minimized by replacing all the lenses with achromats, but
6 inch diameter achromats are prohibitively expensive and would have completely defeated
our purpose of building a low-cost, proof-of-concept, prototype system.

We then constructed a two-mirror ‘Z-type’ system (figure 6(b)). Again, our search for
inexpensive optics on the internet met with great success6, and we were able to get two
4.5 inch diameter (f = 50 cm), parabolic, telescope primary mirrors, for only ∼20 euros
each. These mirrors were of very high quality, with broadband enhanced reflection coatings,
and a surface accuracy of λ/5. The two mirror system eliminated chromatic aberrations and
formed a sharp and clear image. However, in light of our ultimate aim which was to have a
rat explore an odour plume within an arena placed in the test region, this configuration had a
serious drawback. The Z-type system is an off-axis system, and off-axis aberrations, such as
coma, are minimized by keeping the angle θ small. To have enough room to fit the rat arena
within the test area, one has to either increase θ , by increasing off-axis errors, or make the
distance between the mirrors inconveniently large.

At this point, we finally converged on a single mirror design that is shown in
figure 6(c). An image of the final prototype system is shown in figure 7. We used this system
to successfully image the exhalation of air from a lightly anesthetized rat. During inhalation,
the inflow of air into the nostrils did not cause a large enough change in refractive index to be

5 Anchor Optics is an excellent source for low-cost optics, both mounting hardware as well as optical elements.
The company website also has a very nice collection of old instruction manuals that can be downloaded for no cost,
including one for a now discontinued schlieren imaging system. (Anchor Optics, 101 E Gloucester Pike Barrington,
NJ 08007, USA).
6 The Sylvan Company (http://www.sylvancompany.com). This company limits its sales exclusively to internet
purchases. However, similar parts may be obtained from manufacturers who specialize in making mirrors for amateur
telescope makers.

http://www.sylvancompany.com
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Figure 8. Schlieren image of air exhaled from a deeply anesthetized rat. The image was taken
with a single mirror schlieren system that used a 12 inch diameter mirror and a high speed camera
(Photron Fastcam-1024PCI, 1 KHz frame rate). The slightly brighter semi-circular region in the
image is light reflected from a beam-splitter.

seen in the video recording. In contrast, exhalation could be clearly seen, most likely because
of the moisture and warmth of the expelled air. The success of this prototype system convinced
us to construct a larger, research grade imaging system, and figure 8 shows one video frame
of data taken with this system that shows the air exhaled by a deeply anesthetized rat.

5.1. Alignment and operation

The alignment procedure for each of the three systems is quite similar and relatively
straightforward. Our light source, shown in figure 5, consisted of a 300 W projector bulb
illuminating a 500 µm diameter pinhole (not shown in the figure). A 3 inch diameter, f =
5 cm achromat (figure 2), was used to collect light from the bulb and focus it onto the pinhole.
A small piece of ground glass was placed in front of the pinhole to uniformly illuminate
the aperture. Without the ground glass, the bulb filament is imaged instead, providing a
non-uniform background to the schlieren images (see [19, p 174]).

To assemble a schlieren system, the mirrors or lenses are first arranged according to any
of the configurations shown in figure 6 and adjusted to form a clear and undistorted image of
the pinhole on a screen or piece of white cardboard (for the mirror-based setups, θ � 5◦–10◦).
The position of the screen sets the position of the knife-edge plane. The schlieren test object
that is to be imaged is first placed in the test region and brought into focus by the CCD camera,
and then removed.

At this point, the image acquired by the CCD camera should be a bright, uniformly
illuminated circle. If not, the camera position should be changed until this is the case. The
intensity of the lamp is then adjusted so that the brightness of the circle is roughly half way
between being completely dark and saturating the camera. Now, the knife-edge is introduced
into the image plane and moved to cut-off half the image of the pinhole. Accurately positioning
the knife-edge is crucial to obtaining good schlieren images.

To obtain a uniform background, the knife-edge must be positioned exactly in the image
plane. When the knife-edge is initially placed to block the image of the source aperture,
the intensity of the image on the monitor will change from bright to dark. If the knife-edge
is placed exactly in the image plane, the bright circle will turn dark almost uniformly. If
the knife edge lies outside the image plane, then a dark shadow will pass across the bright
circle from either one side or the other. The direction from which the shadow passes across
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Figure 9. Schlieren image of a jet of helium gas taken with the prototype single-mirror system
(figures 6(c) and 7). The large dynamic range of the image and the low bit-depth of the camera
(8 bits) causes many parts of the image to be saturated.

the image reverses itself as the position of the focal plane is crossed. Thus, by iteration, the
position where the circle turns uniformly dark can be found. A more detailed description of
this procedure can be found in Settles’ book [19, p 180].

Once a uniform cutoff has been achieved, schlieren images should be easily visible. We
have found that as we approach the cutoff, we begin to see air currents in the room quite clearly.
Also, if the palm of the hand is placed facing upwards in the test region, convective plumes
due to body heat can be clearly seen. The sensitivity of the schlieren system increases with
the degree of cutoff, while the dynamic range decreases. Thus, depending on the magnitude
of �n, the refractive index difference between the test object and the background air, the
cutoff must be accordingly adjusted. For example, ‘strong’ schlieren objects such as a burning
candle require cutting off a very small amount of the source, otherwise the intensity changes
exceed the dynamic range of the system and saturate the image. Figure 9 shows an image of
a jet of helium gas. Because the range of �n was large, and our camera had only an 8-bit
dynamic range, large parts of the image are saturated. Once the system has been aligned, a
variety of schlieren objects can be imaged. Classic examples include breath from the nostrils,
a hot soldering iron, vapours from an organic solvent (both heavier and lighter than air) and
jets of helium and carbon dioxide gas.

6. Summary

Pedagogically, we found this work to be of interest for three reasons. First, setting up and
using the schlieren system helped the students working on the project gain an intuition for
simple ray-based geometrical optics. Schlieren images are visually striking and the dynamic
nature of these images makes for a vivid demonstration of the principles of ray optics. More
quantitative explanations of the formation of schlieren images using the eikonal equation, or
even Fourier optics, can also be introduced at this point (see the appendices in [19]).

Second, constructing these systems provided an excellent setting in which to discuss
common issues in optical design, such as tradeoff, calculating a light budget, evaluating
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different designs and so forth. For example, as discussed in the previous section, positioning
the cutoff depends on the magnitude of �n that will be observed. This tradeoff between
resolution and dynamic range demonstrated how a ‘one-size-fits-all’ approach fails to work,
and one needs a sound grasp of the physics of the situation to design a good experiment.

Third, and perhaps most importantly, the students were exposed to a research environment
which gave them a flavour of how real experiments are conducted. The students first clearly
defined a goal—to image airflow from a breathing rat. To achieve this goal, they constructed
three different prototype schlieren systems. Using these systems, they conducted preliminary
experiments that allowed them to conclude that schlieren imaging was indeed a suitable
experimental technique to image respiratory airflow. Finally, by examining the experimental
constraints, they were able to select one of the three experimental geometries as being best
suited for the task. In work only mentioned in passing in this paper, the students then went on
to design, construct and operate a research-grade schlieren imaging system. This also gave the
students, all of whom were engineers, an experience of the typical engineering design cycle
which begins with a design that is then tested on a prototype, and finally leads to a finished
product. That exposure to a research environment can be an exciting introduction to science
for undergraduates is by no means a new idea [25–29]; however, to watch it first hand is a
deeply satisfying experience.
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