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Abstract- The locomotor controller for  walking, running, 
swimming, and flying animals is based on a Central 
Pattern Generator (CPG). Models of CPGs as systems of 
coupled non-linear oscillators have been proposed and 
have been used for  the control of robots. In this paper we 
describe the implementation of an adaptive CPG model in 
a compact, custom analog VLSI circuit. 

We demonstrate the function of the chip by 
controlling an underactuated, running robotic leg. This 
circuit has adaptive properties that allow it to tune its 
behavior based on sensory feedback. To our knowledge 
this is the first instance of an adaptive CPG chip. 

This approach supports the construction of extremely 
inexpensive, low power and compact controllers for  
walking, flying and swimming machines. 

1.0 Introduction 
1.1 Motivation 
Challenges for robotics in the future include the 
miniaturization of walking, running, and flying robots, 
increasing the real-time adaptability of robots to the 
environment, and the creation of mass-market consumer 
devices (e.g. Sony Dog [ 11). These new technologies will 
require small, low-cost, power-efficient, and adaptive 
controllers, and may therefore benefit greatly from 
computational support, e.g. neuromorphic engineering, 
that is radically different than current microprocessor- 
based technology. 

The basic philosophy of neuromorphic engineering is 
to use principles of biological information processing to 
address real-world problems. In principle, complete 
nervous systems can be built to control robots using a 
neuromorphic approach. These artificial nervous systems 
can be realized in very low cost, low power and low 
weight units. 

It is well recognized that the physics of silicon is in 
many ways analogous to the biophysics of the nervous 
system [9]. Therefore, neuromorphic systems are often 
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implemented in silicon using as much of the properties of 
device physics as possible. However the vast majority of 
work in neuromorphic engineering to date has 
concentrated on sensory processing (for example, the 
construction of silicon retinas [8] or silicon cochleas 
[lOl).  

In this paper we present a chip, based on established 
principles of the locomotor control circuits in the nervous 
system, that mimics many of the features of a biological 
Central Pattern Generator (CPG). We show that the 
circuit, consuming less than one microwatt of power and 
occupying less than 0.4 square millimeters of chip area 
(using 1.2 micron technology), can generate the basic 
competence needed to control a robotic leg running on a 
circular treadmill. Furthermore, the circuit can use 
sensory feedback to stabilize the rhythmic movements of 
the leg. 

Potentially, this technology could provide 
inexpensive circuits that are adaptable, controllable and 
able to generate complex, coordinated movements. Such 
circuits could be used in miniature systems to modulate 
repetitive cyclical movements based on appropriate 
sensory feedback. These systems could include miniature 
walking, running, flapping and swimming machines. 

1.2 CPGTheory 
The basic notion of an autonomous neural circuit 
generating sustained oscillations needed for locomotion 
was first articulated in the early part of this century [2]. 
The key idea is that an autonomous system of neurons can 
generate a rhythmic pattern of neuronal discharge that can 
drive muscles in a fashion similar to that seen during 
normal locomotion. Locomotor CPGs are autonomous in 
that they can operate without input from higher centers or 
from sensors. Under normal conditions, however, these 
CPGs make extensive use of sensory feedback from the 
muscles and skin, as well as descending input [51. 
Furthermore, the CPG transmits information upward to 
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modulate higher centers as well as to the periphery to 
modulate incoming sensory information. 

The CPG is most often thought of as a collection of 
distributed elements. For example, in the lamprey (a 
relatively simple fish-like animal) small, isolated portions 
of the spinal cord can generate sustained oscillations. 
When the spinal cord is intact, these small elements 
coordinate their patterns of activity with their neighbors 
and over long distances ([ 31 [7]). 

It is well known that sensory input can modulate the 
activity of CPGs. Modulation of the CPG by sensory 
input can be seen quite clearly in the resetting of the 
phase of the CPG. For example, as a walking cat pushes 
its leg back, sensors in the leg muscles detect stretching. 
These sensors (called stretch receptors) signal this stretch 
to the nervous system. Their firing initiates the next phase 
of the CPG causing the leg to transition from stance to 
swing phase. 

In the early 1980s Cohen and colleagues [4] 
introduced a model of the lamprey CPG using a system of 
phase-coupled oscillators. Later, a model called Adaptive 
Ring Rules (ARR), based on ideas in this and related 
work was created for use in robot control [11][12]. 

A full exposition of ARR is beyond the scope of this 
paper. Briefly, an ARR is a model of a non-linear 
oscillator at a behavioral level. This model is complex 
enough to drive a robot while also allowing easier 
implementation of learning rules. ARR theory inspired 
the philosophy behind the design of this chip. 

1.3 Modeling CPGs on a Neuromorphic 
Chip 

CPGs are most often modeled as distributed systems of 
non-linear oscillators. In our implementation the basic 
coordination in the leg is achieved by phasically coupling 
two neurons together to achieve oscillations. When 
coupled together they are alternatively active. This 
alternating activity is the basic coordination needed to 
drive the hip of the robot. A phase control circuit governs 
the phase difference between the neurons. 

These oscillator neurons drive two integrate-and-fire 
spiking motoneurons. These neurons are used to drive an 
actuator. In principle, a spiking neuron could also drive 
biological muscle, a pneumatic cylinder, a McKibben 
actuator ,or biomuscle directly. 

In our experimental setup, the robot under control 
uses servomotors. To be compatible with this technology, 
it was necessary to low-pass filter the spiking neurons and 
then integrate the resulting smooth graded velocity signal. 

We will show the circuit in autonomous operation 
and with sensory feedback from stretch receptors used to 
reset the CPG. We also demonstrate a property of our 
biomorphic leg: we show that our limb and its control 
circuit not only produce stable rhythmic motion, but can 
also compensate for intentional chip biases, environment 

disturbances, as well as mechanical complexity of an 
active hip and passive knee. 

1.4 Previous Work 
CPG chips and circuits have been created before. For 
example, Still reports on a VLSI implementation similar 
to a CPG circuit used to drive a small robot in [16][17]. 
This circuit captured some of the basic ideas of a CPG but 
did not incorporate a motoneuron output stage, and the 
system did not provide for adaptation via sensory input. 
However, she did demonstrate rudimentary control of a 
walking machine. 

The work of DeWeerth and colleagues [ 131 captures 
the neural dynamics on a much more detailed level than 
has been achieved here. There are great difficulties in 
applying such a system to the control of a robot. 
Primarily, parameter sensitivity makes such circuits 
difficult to tune. To address this issue, DeWeerth and 
collaborators have implemented neurons that self-adapt 
their firing-rate [ 151. The adaptation, however, is 
independent of external inputs from sensors. While 
detailed neural models are difficult to work with in 
silicon, we will undoubtedly learn a great deal from these 
efforts in the future. 

Ryckebusch and colleagues [ 141 created a VLSI CPG 
chip based on observations in the thoracic circuits 
controlling locomotion in locusts. The resulting VLSI 
chip was used as a fast simulation tool to explore 
understanding of the biological system. Their system did 
not use feedback from sensors, nor was it connected to a 
robotic system. However, again their objective, of 
modeling a particular biological circuit, was different than 
the objective described in this paper. 

Our work differs from the previous work in several 
respects. First, we allow adaptation based on sensory 
input. Adaptation is shown as a phase resetting of the 
CPG based on certain sensory triggers (see section 2.2.1). 
Firing frequency is also adapted by sensory feedback (see 
section 2.2.2). Second, our chip has short-term memory 
devices that allow adaptation of the output parameters. In 
addition, we make use of integrate-and-fire neurons for 
the output motoneurons. Our abstraction is at a higher 
level than other reported work ([ 13][ 151). We believe that 
by using a higher level of abstraction we will be able to 
more easily implement on-chip learning. In systems based 
on numerous inter-related parameters, it is not apparent 
how learning at the level of behavior can be coupled to 
low level parameter changes. 

2.0 The CPG Chip 
The CPG chip is designed to provide biologically 
plausible circuits for controlling motor systems. The chip 
contains electronic analogues of biological neurons, 
synapses and time-constants. In addition, the chip also 
contains dynamic analog memories, and phase 
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Figure 1. Layout of the CPG chip. Each component is 
wired to pins to facilitate the prototyping of oscillator 
circuits. 

modulators. Using these components, non-linear 
oscillators, based on the central pattern generators of 
biological organisms, can be constructed. 

The dynamical properties of the neural circuits can 
also be adapted using direct sensory information. In this 
first version of the chip, shown in Fig. 1, all the 
components are individually accessible such that they can 
be connected with off-chip wiring to realize any desired 
circuit. In future versions, tested neural CPG circuits will 
be integrated with completely hardwired or 
programmable circuits. 

2.1 The Hardware Components 
In this section we describe the basic elements of the CPG 
chip: the spiking motoneuron, the graded response neuron 
and the (CPG) oscillator. 

2.1.1 The Spiking Motoneuron 
Our neurons use an integrate-and-fire model. A capacitor, 
representing the membrane capacitance of biological 
neurons, integrates impinging charge. When the 
"membrane-potential'' exceeds the threshold of a 
hysteretic comparator, the neuron outputs high. This logic 
high triggers a strong discharge current that resets the 
membrane potential to below the threshold of the 
comparator, thus causing the neuron output to reset. This 
circuit therefore emulates the slow phase and fast phase 
dynamics of real neurons. The process then starts anew. 
Fig. 2 shows a schematic of the neuron circuit. 

In our neurons, activation information is coded as 
spike frequency. The membrane potential charge rate 
controls the firing frequency of the neuron. This rate is 
given by the sum of the total charge flowing in and out of 
the membrane capacitance. The strength of the reset 
current source determines the width of each neural spike. 

Synapse Neuron 
Figure 2. Schematic of the integrate-and-fire 
motoneuron and synapse. 

The discharge current is usually set to a large value so 
that each spike is narrow and is not influenced by the 
charge injected onto the membrane capacitor. Typically, 
the neuron is set such that it fires at a nominal rate at rest; 
additional inputs increase or decrease the firing rate. 
Shunting inhibition can also silence the neuron. 

Equation 1 gives the dynamic equation for the 
neuron. There are three input signals: (1) A feedback 
input from a hysteretic comparator ( S,* ), (2) Excitatory 
inputs from other neurons (S, ) and (3) Inhibitory Inputs 

from other neurons (q).  These inputs are weighted by 
current sources. These current sources are denoted 
I, , I, and respectively. In addition, a constant current 
injection sets a spontaneous spike rate of the neuron. As 
noted above, Id,, sets the spike duration. Finally, the terms 

V: and V; set the upper and lower thresholds for the 
hysteretic comparator respectively. 

The spike trains impinging on a neuron activate 
switches that allow charge quanta to flow onto or off the 
membrane capacitor. The amount of charge transferred 
per spike is the synaptic weight and is controlled by an 
applied voltage that regulates the current sources. 
Modulation of this voltage allows the adaptation of the 
neural firing rate and is used during learning. The left- 
hand side of Fig. 2 shows the schematic of the synapse, 
while equation 1 shows how the neuron is affected by the 
synaptic weight. 

1 if y- >v,' 
0 if y- cv; 

2.1.2 Graded Response Neuron 

Si = 

In addition to spiking neurons, we make use of neurons 
with graded response. These neurons are essentially the 
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Figure 3. Adaptive control of a limb’s dynamics using a 
neural CPG with learning capabilities. 

same as the spiking neuron except that the hysteretic 
comparator is replaced with a linear amplifier stage and 
no feedback signal is used. 

2. I .3 The Oscillator 
The neural circuits for creating the CPG are constructed 
using cross-coupled square-wave oscillators. The output 
of these oscillators drives the bursting motoneurons 
described in section 2.1.1 A master-slave configuration of 
the neurons allows us to construct an oscillator with a 
constant phase relationship. By setting the excitatory and 
inhibitory weights to equal values, a square-wave with a 
duty-cycle of 50% is obtained. The phase relationship 
between the two sides can be varied. The frequency of 
oscillation is set by the magnitude of the weights. This 
asymmetrically cross-coupled oscillator serves as the 
basic CPG unit that can be modified according to the 
application. By injecting or removing charge from the 
membrane capacitors of the oscillator neurons, the 
properties of the CPG can be altered. 

For more complex waveforms a phase controller is 
included on chip. This phase controller allows the phase 
difference between oscillators to be set arbitrarily. 

For the experiments described here, a 180 degrees 
phase relationship is required. Hence an inverted version 
of one of the oscillators is used, as shown in Fig. 3. 

2.1.4 The Neural Circuit 
The complete neural circuit is given in Fig. 3. The output 
of the basic oscillator unit is used to inhibit the firing of 
the spiking motoneuron. When the oscillator output is 
high, the motoneuron is not allowed to fire. This produces 
two streams of 180 degrees out of phase spike trains. 
These trains can be low-pass filtered to get a voltage 
which can be interpreted as a motor velocity. 
Consequently, the oscillator controls the length of the 
motor spike train, while the spike frequency indicates the 
motor velocity. 

The spike frequency is regulated by a feedback loop. 
Spiking places charges on the neuron membrane capacitor 
seen in the lower part of Fig. 3. The integrated charges are 
buffered and then used to down-regulate spike frequency. 
In this way spike frequency is less sensitive to component 
variations. 

In the next section we describe two additional 
sensory mediated loops that adapt the oscillator and the 
motoneuron spiking. 

2.2 Sensory Adaptation and Learning 
2.2.1 Adaptation based on a ’stretch receptor’ 
As shown in Fig. 3, the oscillator neurons can be stopped 
or started with direct inhibitory and excitatory sensory 
inputs, respectively. When the inputs are received as 
strong inhibition, the membrane capacitor will be shunted 
and discharged completely. It will remain in this state 
until the inhibition is released, then the normal dynamics 
of the oscillator will continue from the inactive state. 
Alternatively, if the sensory input is received as a strong 
excitation, the oscillator will be driven into an active 
state. When the excitation is released, the oscillator will 
continue from the active state. Clearly, the charge-up or 
discharge of the membrane capacitor will be influenced 
by any direct sensory input. If the sensory inputs are 
periodic, the oscillator outputs can be driven such that 
they are phase locked to the inputs. 

We use this property to mimic the effect of the 
stretch reflex in animals. When the leg of an animal is 
moved to an extreme position, a special sensor called a 
stretch receptor sends a signal to the animal’s CPG 
causing a phase resetting. This is mimicked in the circuit 
presented here. Referring to Fig. 3, the leg may reach an 
extreme position while still being driven by the oscillator. 
In this case, a virtual position sensor, which mimics a 
stretch receptor, sends a signal to ResetA or ResetB to 
cause a resetting of the oscillator circuit as is appropriate 
to cause a hip joint velocity reversal. 

2.2.2 Spike Frequency Adaptation 
If learning is required, the chip provides a short-term (on 
the order of seconds) analog memory to store a learned 
weight. Clearly, this architecture favors a continuous 
learning rule. Spikes from the motoneurons are used to 
increase or decrease a voltage on the capacitor of a graded 
response neuron. In the absence of the training inputs, the 
stored weights decay at approximately O.lV/s. Fig. 3 
shows a schematic for adapting the spiking frequency of 
the motoneurons based on the swing amplitude of the 
limb. 

In Fig. 3, the limb is driven back and forth with a 
velocity signal that is obtained by low-pass filtering the 
activity of the motoneurons. Since the CPG oscillator 
fixes the duration of the spike train, changing the spike 
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frequency of the motoneuron alters the amplitude of the 
velocity signals, which in turn varies the swing amplitude 
of the limb. If the amplitude of swing does not reach the 
maximum positions, the motoneuron spike rate is 
increased. An increase in spike rate is kept bounded by 
negative feedback to the learning circuit. When the swing 
amplitude reaches maximum, the positive input to the 
learning circuit is reduced, thus allowing the spiking rate 
to settle to a constant value. The continuous negative 
feedback of the spike rate and the input from the position 
detectors maintain the learned spiking rate. The duration 
of the burst component of the spike train can be further 
controlled by feeding the position signals directly to the 
CPG oscillators to reverse the trajectory of motion at the 
end points. This allows very asymmetric forward and 
backward velocity signals to be adaptively re-centered, as 
shown in Section 5 .  

3.0 Experimental Setup 
The experimental setup consists of a small robotic leg, the 
CPG chip, necessary components to interface the chip to 
the robotic leg, a rotating drum treadmill and data 
collection facility. 

The robotic leg is a small (10-cm height) two-joint 
mechanism. In our setup, only the "hip" is driven. The 
"knee" is completely passive. The knee swings freely, 
rotating on a low friction ball-bearing joint. A hard 
mechanical stop prevents the knee from hyperextending. 

The leg runs on a drum that is free to rotate under the 
contact forces of the leg as the leg pushed backward on 
the drum it set the drum spinning 

The neurons of the CPG chip are interfaced to a 
servomotor using a rudimentary muscle model. The 
muscle dynamics are simulated as a low pass filter to 
smooth the output of the spiking neurons. This is 
followed by an integrator, implemented in software, to 
convert the velocity signal to a position command needed 
by the servomotor. A bias was intentionally introduced 
into the chip to cause an asymmetry in the backward and 
forward swing of the leg. This bias might be typical of 
uncompensated parameters in a chip. 

The robotic leg has three sensors on it. Two LVDT 
sensors monitor the position of the knee and hip joints. 
LVDT sensors are used because they introduce minimal 
friction and have infinite resolution. The robot also has 
miniature load-cell sensor that monitors ground forces. 
The units of the load cell are uncalibrated in all figures. 

The output of the hip LVDT is sampled digitally. The 
signal is interval coded. Two intervals are selected as 
representing the extremes of movement of the hip (called 
"virtual position sensor" in Fig. 3). When these extremes 
are reached, the corresponding interval is active. This 
interval then sends a signal to the CPG chip causing an 
appropriate reset. 

INTACT 
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Figure 4. Hip, knee and foot-contact phase diagram. 
Most of the trajectory is in a tight bundle, while the 
outlying trajectories represent perturbations. 

An oscillator frequency was selected by hand to be 
approximately 2-3 Hz. This frequency would excite the 
mechanical structure and cause the leg to "run" a rotating 
drum. In practice the leg was not highly sensitive to this 
excitation frequency but no effort was made to quantify 
this sensitivity. 

4.0 Experiments 
4.1 Running with apassive knee 
In this experimental setup, the CPG circuit drives the 
actuator in the hip joint. The knee joint is passive and 
rotates with very little friction. The assembly is suspended 
above a rotating drum. The CPG circuit is started. 

Data is collected from three sensors: Foot pressure, 
knee and hip. "Stretch receptor" sensory feedback from 
the hip is used as feedback to the CPG. 
4.2 Sensory feedback lesioning 
This experimental setup is similar to the first experiment. 
The difference is that sensory feedback is lesioned (turned 
off) periodically. We collect data as before. 

5.0 Results 
5.1 Running Results with a Passive Knee 
A remarkable feature of this system is that the knee joint 
adapts the correct dynamics to enable running (!). As the 
upper limb swings forward, the lower limb rotates so that 
the foot comes off the ground. When the upper limb is 
suddenly accelerated backward, the momentum in the 
lower limb forces the knee to lock in place. At just the 
correct moment, the foot contacts the ground and the 
subsequent loading keeps the knee joint locked in place. 
As the foot travels backward it eventually begins to 
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Figure 5. This figure shows the effect of lesioning 
sensory feedback. When the feedback is lesioned (Time 
1 1-19 seconds and 3 1-42 seconds), the hip drives 
backward significantly. As it does the foot begins to 
lose contact with surface and the knee stops moving. 
When the lesion is reversed at 19 and 42 seconds, the 
regularity of the gait is restored. 

unload. Stored energy in the elastic foot causes it to 'kick 
up' and smartly snap off the ground, an effect most 
noticeable at higher velocities. 

A phase plot of the knee, foot and hip position and 
foot contact is shown in Fig. 4. The bulk of the trajectory 
describes a tight 'spinning top' shaped trajectory while 
the few outlying trajectories are caused by disturbances. 
After a disturbance the trajectory quickly returns to its 
nominal orbit and we can infer that the system is stable. 

5.2 Lesion Results 
Next we lesioned the sensory feedback to the leg 
periodically. Figure 5 shows the effect of lesioning on the 
position of the hip and knee joints as well as the tactile 
input to the foot. After lesioning the leg drifts backward 
significantly due to a bias built into the chip. When the 
sensory input is restored, the leg returns to a stable gait. 

5.3 Gait Stability 
Perturbations to the leg cause momentary disturbances. 
As seen above in Fig. 4, several of the trajectories are 
clear "outlyers" to the typical orbit, and result from 
environmental disturbances. 

We found that sensory feedback could compensate 
for both the bias of the chip and environmental 
perturbations. Figure 6 shows the trajectory after 
perturbation in the intact and lesioned cases. In the intact 
case, a perturbation at cycle '2' leads to outlying 
trajectories, but the trajectory is quickly restored to the 
nominal orbit. In the lesioned case, removal of sensory 
feedback causes the chip bias to destroy the trajectory of 
the leg. The gait quickly deteriorates. 

ume (aCSrrW 

Figure 6.  Effect of perturbations on gait with intact and 
lesioned sensory feedback. (A) Five sequential trajectories 
(numbered) in intact and lesioned conditions are 
represented as ranging between black and light gray. A 
perturbation at 2 in the intact case leads initially to worse 
trajectories (3 and 4). but quickly stabilizes to the nominal 
orbit (5). In the lesioned case, chip bias causes a 
perturbation at 2 from which the gait can not recover; the 
hip is forced backward (3,4, and 5). (B) The same ten 
trajectories shown in A presented as hip position through 
time, with knee position gray-level coded. Intact sensory 
feedback permits recovery while lesioning causes drift of 
both the hip and knee. 

6.0 Summary and Conclusions 
In this paper we have presented the first experimental 
results of an adaptive aVLSI neural chip controlling a 
robotic leg. Using sensory feedback, the circuit can adapt 
the gait of the leg to compensate both for chip bias and 
for environmental perturbations. This work represents the 
first experimental results of an adaptive aVLSI neural 
chip controlling a robot leg. 

A network of neurons in the spinal cord called the 
Central Pattern Generator or CPG generates basic 
rhythmic locomotor movements in animals. CPGs have 
been studied extensively and are beginning to be better 
understood. Cohen proposed a model of the CPG in the 
early 1980s and subsequently this CPG model was then 
adapted for use in robotic work [ 11][ 121. 

In this paper we present a hardware implementation 
of this CPG model. Our custom aVLSI chip, having only 
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4 neurons and occupying less than 0.4 square mm, has the 
basic features needed to control a leg running on a 
treadmill. 

The second point made in this paper is that running is 
a dynamic process. As has been noted by the biological 
community (c.f. Robert Full [6]) as well as in the robotics 
community, much of the "intelligence" in running is 
actually in the dynamics. This is clearly illustrated in the 
current work by the use of an under-actuated robotic leg. 
In the results presented here, the energy injected into the 
hip is sufficient to excite an orbital trajectory of the knee 
as well. The hip, knee, and foot sensor orbit appears 
remarkably stable when the CPG circuit is stabilized 
using sensory feedback. 

We conclude that the control of a running leg using 
an aVLSI CPG chip is possible. We demonstrate that, at 
least in this experimental setup, running is possible using 
an under-actuated leg. Finally, we demonstrate a basic 
adaptive property of phase resetting using a stretch 
receptor. 

It should be emphasized that the system being 
controlled is non-linear and the chip itself uses non-linear 
elements to control it. We have a coupled system of non- 
linear elements. We make no attempt to linearize the 
system. Instead we take advantage of the non-linearities. 

Because (1) we do not make use of models, or 
linearization, (2) we adapt principles from biological 
systems, and (3) these principles can easily be 
implemented with low-power integrated circuits, we are 
able to achieve a very compact solution. Further 
experimentation with this system will allow us to 
determine if a robot can be made to walk by coupling 
together multiple circuits of the type presented here. The 
current results, however, are promising. 
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