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When an animal moves an array of sensors (e.g., the hand, the eye) through the
environment, spatial and temporal gradients of sensory data are related by the velocity
of the moving sensory array. In vision, the relationship between spatial and temporal
brightness gradients is quantified in the “optical flow” equation. In the present work, we
suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the
perceptual intensity that “flows” over the array is bending moment. Changes in bending
moment are directly related to radial object distance, defined as the distance between
the base of a whisker and the point of contact with the object. Using both simulations
and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature
can be estimated based on differences in radial distance across the array. We then
develop two algorithms, both based on tactile flow, to predict the future contact points
that will be obtained as the whisker array translates along the object. The translation of
the robotic whisker array represents the rat’s head velocity. The first algorithm uses a
calculation of the local object slope, while the second uses a calculation of the local object
curvature. Both algorithms successfully predict future contact points for simple surfaces.
The algorithm based on curvature was found to more accurately predict future contact
points as surfaces became more irregular. We quantify the inter-related effects of whisker
spacing and the object’s spatial frequencies, and examine the issues that arise in the
presence of real-world noise, friction, and slip.
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INTRODUCTION
As an animal moves through the environment, the spatial and
temporal gradients of sensory data it acquires are related through
the velocity of its moving sensory surfaces. This relationship is
represented by the “complete derivative” (Munson et al., 2009),
and represents a mathematically inviolate description of informa-
tion flow over moving sensory surfaces.

In the field of visual neuroscience, the complete derivative has
been termed the “optical flow” equation. The optical flow equa-
tion relates spatial and temporal intensity (brightness) gradients
to the velocity of the animal (Barron et al., 1994; Beauchemin and
Barron, 1995; Horn and Schunck, 2003). Recent papers have for-
malized the idea of “tactile flow” to describe the flow of strain
energy density across the hand (Bicchi et al., 2008; Scilingo et al.,
2008), and bending moment (torque) at the whisker base across
the rodent vibrissal (whisker) array (Gopal and Hartmann, 2007;
Hartmann, 2009).

Notably, the optic and tactile flow equations are typically used
by assuming that the animal makes use of spatial and tempo-
ral gradients of brightness (vision) or strain energy (tactile) to
compute the velocity of its sensor array.

We recently proposed a complementary scheme: namely, if
the animal already knows its own velocity, then it can use the
complete derivative to predict future sensory data (Gopal and

Hartmann, 2007; Hartmann, 2009). Computing the complete
derivative at multiple spatial scales would allow the animal to pre-
dict the stimulus that it will measure in the next sensory instant
and provide a mechanism to distinguish between externally-
generated and self-generated motion.

In the present work, we used the rat vibrissal system as a model
to examine the plausibility of using the complete derivative to
predict upcoming sensory data. Rats actively brush and tap their
whiskers (vibrissae) against objects to tactually explore the envi-
ronment. During detailed exploration of objects, rats move their
vibrissae rhythmically, between 5 and 25 Hz (Welker, 1964; Berg
and Kleinfeld, 2003). During navigation behaviors, however, rats
often hold their whiskers out in a relatively static position as they
follow along a wall or tunnel.

The present work was designed to investigate tactile flow across
the vibrissal array in this type of translational navigation behav-
ior. We used both simulations and a 1 by 5 array of artificial vibris-
sae (hardware) to investigate the plausibility of using the complete
derivative to predict upcoming whisker-object contact points.

METHODS
Our initial investigations were performed in simulation, and we
then investigated the real-world issues that arise with implemen-
tation on a 1 × 5 array of robotic whiskers.
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ALGORITHMS FOR THE DETERMINATION OF RADIAL DISTANCE,
SLOPE, AND CURVATURE
Radial distance determination using translations instead
of rotations
Radial object distance is defined as the Euclidean distance
between the base of a vibrissa and the point at which it makes
contact with an object. Previous work has shown that an object’s
contour can be extracted by continuous rotation of a vibrissa
against an object (Kaneko et al., 1998; Solomon and Hartmann,
2010). As the vibrissa “sweeps” against the object through a
rotation, measurement of the bending moment (torque) at the
vibrissa base permits the radial object distance to be continu-
ously computed, and the object contour thereby inferred. This
technique was empirically validated with sweeps of a vibrissa
past three differently shaped objects (Solomon and Hartmann,
2010). The rotational sweep models vibrissal motion during typ-
ical “whisking” behavior, in which the rat rotates its vibrissae at
their base.

During wall-following behavior, however, rats do not always
whisk, but sometimes keep their vibrissae protracted against the
wall. This behavior is better modeled as a relative translation
between vibrissa and object, rather than as a rotation. Although
Solomon and Hartmann (2010) developed equations to describe
the translational sweep of a vibrissa past an object, the equations
were not validated in hardware.

In the present study, we experimentally validate the transla-
tion equations developed in Solomon and Hartmann (2010) and
use them to extract object contours. Equations 1–3 below provide
only a brief overview of the differences between radial distance
extractions during rotation versus translation. A more complete
description of radial distance extraction based on rotation is
provided in Solomon and Hartmann (2010).

As shown in previous work (Kaneko et al., 1998; Solomon
and Hartmann, 2006, 2008, 2010, 2011; Birdwell et al., 2007) the
radial distance r0 to the initial contact point on an object can be
calculated using

r0 = k
φ0

M0
(1)

where k = 3EI, E is the elastic modulus of the vibrissa, I is the
area moment of inertia, φ0 is a small pushing angle beyond initial
contact (typically about 3◦), and M0 is the bending moment at
the vibrissa base.

Once the radial distance r0 to the initial contact point is cal-
culated, the whisker undergoes either a small rotation (dφ) or
translation (dL). Radial distance at the current time step (ri)
can then be calculated based on estimates of radial distance at
previous time steps.

The procedures for calculating ri after a translation or rotation
are quite similar, but they differ in the calculation of the magni-
tude of the vector δi−1, perpendicular to the longitudinal axis of
the vibrissa at the contact point. With the x-axis defined to be
parallel to the vibrissa at t = t0, Solomon and Hartmann (2010)
define δi−1 for rotation as:

δ̄i−1 = −ri−1 · dφ ·
[

sin φi−1

cos φi−1

]
. (2)

where ri−1 is the radial distance at the previous time step (before
rotation), dφ is the incremental rotation, and φi−1 is the angle
between the vibrissa base at time t0 and the base at time ti−1 (after
rotation).

In contrast, δi−1 for translation is defined by:

δi−1 =
[

0
dL

]
. (3)

where dL is the incremental linear movement between time steps.
It is important to note that the base of each vibrissa is fixed per-
pendicular to the direction of linear movement for this definition
of δi−1.

The value of δi−1 is then used to calculate the next radial
distance ri, regardless of whether the whisker was translated or
rotated. For a detailed explanation of this calculation, please refer
to Figure 4 of Solomon and Hartmann (2010) and Equations
6–11 also in Solomon and Hartmann (2010).

Computing object slope and curvature from radial distances
The local slope (μ) and the local curvature (κ) of an object can
be calculated based on radial distance measurements. To calcu-
late either μ or κ, we first define our coordinate system as shown
in Figure 1. The distance dsi is the distance the base-point of the
whisker has translated in timestep i, and the direction of ds is
always coincident with the rat’s velocity. Radial distance estimates
at multiple time points, the angle dθ, and the distance ds can then

FIGURE 1 | Coordinate system for the determination of slope and

curvature. At each time step, radial distance is calculated relative to the
object. The rat’s velocity is indicated by Vrat, and the arc s is always
parallel to Vrat. The distance dsi is the distance in the direction of s between
discrete time measurements ti and ti−1. dsi−1 is the distance in the
direction of s between discrete time measurements ti−1 and ti−2. Ri is the
radial distance measure at the i th time step, dθi is an angle measure of the
change in direction of Vrat, and μi represents the local slope of the object.
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be used to find the slope μi at each time step:

μi = Ri − Ri−1 + dsi(dθi−1 + dθi)

dsi − Ri(dθi−1 + dθi) + Ri−1dθi−1
(4)

Slope μi is defined by the differences between radial distance
measures (Ri and Ri−1) divided by the distance traveled (dsi).
Each dθ term accounts for changes in the rat velocity vector
between radial distance measurements.

Calculation of curvature is similar, but requires us to first
calculate the slope μi−1 obtained in timestep i − 1:

μi−1 = Ri−1 − Ri−2 + dsi−1dθi−1

dsi−1 − Ri−1dθi−1
(5)

Curvature is then defined using both μi and μi−1:

κi =

∣∣∣∣μi − μi−1

dsi

∣∣∣∣
[
1 + (μi)

2
] 3

2

(6)

This equation is simply the discretized version of the definition
of curvature measured in 2D Cartesian coordinates. Notably, the
commonly-used simplification of Equation 6 that assumes μi is
small compared to unity (and therefore reduces the equation to
just the numerator) was empirically found to be inaccurate. The
small slope assumption does not always hold in our calculations.

When the rat’s heading does not change significantly between
timesteps, dθi and dθi−1 are both zero and Equation 4 can be
simplified to:

μi = Ri − Ri−1

dsi
(7)

where R and s still represent differences between radial dis-
tance measures (Ri and Ri−1) over the distance traveled (dsi).
Equation 5 can be similarly simplified and Equation 6 remains
the same.

Calculating slope and curvature based on radial distances
measured with multiple whiskers
So far, we have described the sensory data obtained by a sin-
gle whisker over time. Equations 4–7 apply equally well, how-
ever, to multiple whiskers making simultaneous contact with
an object, at different locations on the object. In this case, the
subscript i in Equations 4–7 should be interpreted to mean
the ith whisker, instead of the ith timestep. Figure 2 illustrates
this idea. Figure 2A illustrates that calculation of slope and
curvature with a single vibrissa requires memory of the data
acquired on the previous timestep. In contrast, Figure 2B illus-
trates that calculation of slope and curvature with multiple
vibrissa can be achieved within a single time step. This sec-
ond method is equivalent to the rat integrating information
across vibrissae within the array. In practice, calculation of
slope and curvature can occur over both a single whisker (with
memory) and multiple whiskers (at different spatial locations)
simultaneously.

PREDICTION OF FUTURE POINTS OF CONTACT AND FUTURE
CURVATURE OVER TWO DIFFERENT SPATIAL SCALES
Equations 1–7 define the calculations used to find radial dis-
tance, local object slope, and local object curvature. Using
these calculated values, we now show that it is possible to
make predictions about the sensory data the animal will
receive.

FIGURE 2 | Computing slope and curvature over multiple vibrissae.

The inset in the middle of the figure emphasizes that radial distance R is
measured from the base of the whisker to the point at which the whisker
contacts the object. (A) In the single whisker method, we imagine that
the rat compares sensory data acquired from a whisker with the data it
remembers having acquired on the previous timesteps. The rat shaded

gray indicates the location of the rat at time 1, and the rat in black outline
indicates the location of the rat at time 2, having translated slightly forward.
(B) In the multiple whisker method, we imagine that the rat compares data
across whiskers in the array at a single point in time. Both methods (A) and
(B) can be used simultaneously to explore these different spatial scales in
parallel.
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“Tactile flow” permits prediction of sensory data
Because animals control the movements of their limbs, they
control the velocity with which sensory data flow over their
sensory surfaces (Gopal and Hartmann, 2007; Bicchi et al., 2008;
Nemenman et al., 2008; Scilingo et al., 2008; Hartmann, 2009).
The time evolution of the flow field in space and time can be
written via the complete derivative as shown in Equation 8.

dAsen

dt
= ∂Aenv

∂t
+ V • ∇Asen (8)

In this equation, A is any quantity that is being measured
(intensity, temperature, etc.), and the vector V is the relative
velocity between the sensory surface and the environment. The
first term on the right represents intrinsic fluctuations in A, that
is, changes in the environment. If environmental fluctuations are
slow on the time scale of the animal’s movements, that term
becomes zero and the progression of gradients is almost com-
pletely deterministic. New information flows over the edges of
the sensory surface, but thereafter, values may be computed by
calculating the spatial gradients of A across the sensor. Equation
8 provides an inviolate mathematical description of information
flow over moving sensory surfaces. The equation is not a model, it
is necessarily true, in the same way that distance is equal to veloc-
ity integrated over time. Computing the terms of the complete
derivative at multiple spatial and temporal scales would allow the
animal to predict the stimulus that it will measure in the next
sensory instant.

Interpreting “tactile flow” for an array of vibrissae
In this paper, we choose to represent “tactile flow” through radial
distance of contact along the rat whisker because radial distance
is directly related to changes in bending moment at the vib-
rissal base (Kaneko et al., 1998; Solomon and Hartmann, 2006).
Prediction of future radial distances is possible by choosing radial
distance (R) as the main parameter in the complete derivative
shown in Equation 8. If the object being explored is static on the
timescale of the animal’s movements, then the first term on the
right side of Equation 8 will be zero. In the context of the rat
vibrissal system, we can therefore rewrite Equation 8 as follows:

Ri+1 − Ri

(ti+1 − ti)
= 0 + V

Ri − Ri−1

dsi

def= Vμi (9)

where Ri+1 is the radial distance of the future point of contact, Ri

is the current radial distance, ti+1 and ti are the times at which
the radial distances are measured, V is the translational velocity
of the rat, dsi is the distance traveled in the last time step, and μi

is the current slope. Rearranging the equation and substituting μi

as in the last term above yields:

Ri+1 = Ri + Vμi(ti+1 − ti) (10)

Thus it is clear that future radial distance can be estimated
from the current slope.

If the slope of the object is changing, we expect the current
curvature of the object to be able to give a better estimate of future
radial distance. To use curvature, we first predict the future slope

of the object, and then use that predicted slope to predict future
radial distance. The future slope μi+1 is found by choosing μ as
the parameter in Equation 8, as shown in Equation 11:

μi+1 − μi

(ti+1 − ti)
= 0 + V

μi − μi−1

dsi
(11)

The simplification that κi = μi−μi−1
dsi

was empirically found to
generate significant error in our results. Therefore, in Equation
11 we replace μi−μi−1

dsi
with the full equation for κi as shown in

Equation 6, yielding:

μi+1 = μi + Vκi (ti+1 − ti) = μi + V

∣∣∣∣μi − μi−1

dsi

∣∣∣∣
[
1 + (μi)

2
] 3

2

(ti+1 − ti)

(12)
where μi+1 is the local object slope at the future point of con-
tact, μi is the current local object slope, V is the translational
velocity of the rat, κi is the current local object curvature, and
ti+1 and ti are the times at which the radial distances used to cal-
culate slope and curvature are measured. When Equation 12 is
substituted into Equation 10 (with μi+1 replacing μi), we obtain
an equation that estimates future radial distance based on both
current slope and current curvature:

Ri+1 = Ri + V(μi + Vκi(ti+1 − ti))(ti+1 − ti) (13)

Finally, in the type of wall following behavior and environ-
mental exploration in which prediction would be most useful to
a rat, it is more likely that significant changes in calculated local
object slope and local object curvature are due to measurement
error than due to abrupt changes in the object. To decrease the
sensitivity of predicted radial distance to measurement error, we
average the local slope and curvature as follows:

μavg = 1

(N − 1)

N−1∑
i

μi (14)

κavg = 1

(N − 2)

N−2∑
i

κi (15)

where μavg is the average slope, κavg is the average curvature, N is
either the number of past time steps (c.f., Figure 2A) or the num-
ber of vibrissae being used (Figure 2B), μi is the local object slope
between each radial distance measurement, and κi is the local
object curvature between each calculated slope value. Substituting
Equations 14 and 15 into Equations 10 and 13 yields:

Ri+1 = Ri + Vμavg(ti+1 − ti) (16)

and

Ri+1 = Ri + V(μi + Vκavg(ti+1 − ti))(ti+1 − ti) (17)

Simultaneous prediction with single and multiple vibrissae
As illustrated in Figure 2, local object slopes and curvatures can
be computed either using a single whisker (with memory) or
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using multiple whiskers (distributed in space). For each of these
two spatial scales, we can use either Equation 16 or Equation 17
to predict future contact points. We note that the use of multiple
vibrissa permits the calculation of slope and curvature within a
single timestep. In contrast, two or three timesteps are required
to calculate slope and curvature using a single vibrissa. In addi-
tion, multiple vibrissae can be used to rapidly compute surface
gradients on a larger spatial scale than would be possible with
a single whisker. Using a single whisker would require memory
of a duration equal to the inter-whisker-spacing divided by the
velocity of the array, in order to obtain slope and curvature esti-
mates at a spatial scale comparable to those obtained by multiple
whiskers. Thus, there is a tradeoff between spatial scale and mem-
ory. Of course, computations can be done at both spatial scales
(single and multiple whiskers) simultaneously.

HARDWARE METHODS
Radial object distance is defined as the Euclidean distance
between the base of a vibrissa and the point of object contact
(Szwed et al., 2003; Birdwell et al., 2007). Previous work has
shown that an object’s contour can be extracted by continuous
rotation of a vibrissa against an object (Solomon and Hartmann,
2010). As the vibrissa “sweeps” against the object through a
rotation, measurement of the bending moment at the vibrissa
base permits the radial object distance to be continuously com-
puted, and the object contour thereby inferred. This technique
was empirically validated with sweeps of a vibrissa past three
differently shaped objects (Solomon and Hartmann, 2010). This
same study demonstrated that a similar algorithm would work for
translation of the vibrissa instead of rotation, but the translation
technique was not empirically validated.

Vibrissa and vibrissa array design
The present work used a single horizontal row of a five by five
array of vibrissae (Figure 3A). Vibrissae were constructed from
Nitinol wire 4 cm in length and 500 μm in diameter. Nitinol wire
was chosen because it is highly elastic and tends not to kink. Each
wire was mounted in a 4 mm x 4 mm rectangular aluminum block
with a strain gauge (Omega Engineering) attached to each block
face (Figure 3B). This vibrissa design allows for a 2-D measure of
strain, but in the present study the measured strain in the vertical
plane was negligible compared to the strain in the plane of object
translation (the horizontal plane).

Linear actuation
A linear actuation system was built to model the forward (transla-
tional) movement of a rat as it explores its environment. Because
the vibrissa array was tethered with power and signal cables,
it was easier to translate an object past the stationary vibrissa
array than it was to translate the array past the object. In the
present work, these two paradigms are equivalent because we
are concerned only with relative velocity between the array and
object. This study did not explore methods to distinguish between
self-generated versus external movements.

As shown in Figure 4, a wheeled cart carried a test object along
a track a fixed distance from the vibrissa array. The motion of
the cart was controlled by an Animatics SmartMotor. The pro-
grammable motor controller and associated 4000 count/rev

FIGURE 3 | (A) 5 × 5 whisker array on individual rotating platforms and
(B) individual whisker composed of 4 350 ohm strain gauges measuring the
bending moment of a 0.020 diameter superelastic Nitinol wire.

FIGURE 4 | Linear actuation system with test objects and artificial

whiskers.

encoder allowed accurate position measurements within 10 μm.
In practice, however, we only found it necessary to calculate posi-
tion to within 0.1 mm. Similarly, velocity was calculated to within
0.1 mm/sec. These levels of accuracy were chosen because noise
dominated the measurement error below these thresholds, caus-
ing there to be no appreciable difference in position measurement
with increasing accuracy.
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Device calibration
The two strain gauges for each sensing dimension on each vib-
rissa were arranged in a half Wheatstone bridge so the bending
of the vibrissa created a change in voltage at the output of the
circuit. The resting output was zeroed with a potentiometer. The
actual value of the voltage output depended on circuit param-
eters such as gain, so it was necessary to calibrate the voltage
output to the curvature at the base of the vibrissa. To calibrate
the voltage to the curvature, the vibrissa was rotated against a peg
placed at a known distance from the vibrissa base. For cylindri-
cal homogenous vibrissae, curvature and moment differ only by a
scaling factor. Given the known angular deflection of the cylindri-
cal vibrissa and the distance between the base and peg, Solomon
and Hartmann have shown that the moment can be calculated
based on Euler-Bernoulli beam theory (Solomon and Hartmann,
2010).

Once a vibrissa has been calibrated, the voltage recorded from
that vibrissa is converted to moment at the base of the vibrissa.
The radial distance r0 to the initial contact point is calculated
using Equation 1.

Error calculations in simulation and hardware
To quantify the accuracy of radial distance prediction using each
method, prediction error was defined as:

Epred = 1

N

N∑
i=1

∣∣∣∣PRDi − MRDi

MRDi

∣∣∣∣ (18)

where Epred is the prediction error, N is the number of samples
in a trial, PRDi is the predicted radial distance for each sam-
ple, and MRDi is the measured radial distance for each sample.
Epred, which we define as prediction error, is the mean abso-
lute error of the prediction. It is mean absolute percent error
(MAPE) when multiplied by 100. For simulated results, MRDi is
chosen to be accurate to machine precision. This choice results
in a prediction error that solely measures the accuracy of the
prediction algorithm for a given set of parameters. In hardware,
MRDi is calculated using the measured bending moment M as
shown in Equation 1. In this case, prediction error Epred is affected
both by measurement error as well as the accuracy of the pre-
diction algorithm. In practice, however, errors in radial distance
extraction (measurement errors) were small compared to errors
in prediction.

RESULTS
As described in Methods, we use both Equation 16 (prediction
using slope) and Equation 17 (prediction using curvature) to pre-
dict upcoming radial distance, and we use the two equations at
different spatial scales.

PREDICTION: SIMULATION RESULTS
In all simulations in this section, we assume “perfect” radial dis-
tance extraction at time 1, and then calculate slope and curvature
to predict radial distance at time 2. In other words, we do not sim-
ulate whisker deflection. The goal of this section is to verify that
the use of either slope or curvature is sufficient for the prediction
of future radial distance. Simulation will also show whether the

increased mathematical complexity required by the use of local
curvature leads to significantly increased predictive accuracy over
the simpler equation for local slope.

In these simulations, the data collection method (i.e., single
vibrissa or multiple vibrissa) is irrelevant, as the main difference
between the two methods is spatiotemporal scale—the simulated
objects can be made to arbitrary size and the sampling rate can be
increased or decreased arbitrarily.

To quantify prediction error from the use of Equations 16 and
17, we simulated translation of the whiskers past several differ-
ently sized cylinders. We then quantified how well the predicted
values matched actual values. The results of this simulation are
shown in Figure 5. As expected, both local object curvature and
local object slope were good predictors of future radial distance,
with error less than 0.1 ± 0.07% for each method. In these sim-
ulations, the error results only from discretization of slope and
curvature.

Figure 6 shows the results of simulating vibrissa contact with
two different objects. Predictions about the future shape of the
object were made using both Equations 16 and 17. The accuracy
of these predictions for these simulated objects gives insight into
the accuracy of each prediction method and shows the advan-
tages and disadvantages of prediction using these two different
equations.

In Figure 6A, local object slope and local object curvature were
both used to make predictions about future contact points on
an object that contained several gradual changes in curvature.
Predictions using both slope and curvature were reasonably accu-
rate over the object surface, with prediction errors of 6.37 ±
6.81% for prediction using local object slope and 3.02 ± 1.52%
for prediction using local object curvature. In this first exam-
ple, there is a clear advantage to choosing prediction using local
object curvature. This simulation illustrates that prediction based
on local object curvature is more accurate than prediction based
on local object slope when curvature changes gradually.

The second test object (Figures 6B,C) had a location at
which curvature abruptly changed—that is, an edge. Figure 6B
shows that prediction using local object slope (Equation 16)
acts similarly to a low pass filter with respect to change in
curvature, resulting in a relatively accurate prediction. Figure 6C,

FIGURE 5 | (A) Relationship between predicted and actual radial distance
for prediction using local object slope (B) Relationship between predicted
and actual radial distance for prediction using local object curvature.
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FIGURE 6 | (A) Radial distance predictions using both local object slope

(red dots) and curvature (blue dots) for a shape with gradually changing

curvature. Prediction error is 6.37 ± 6.81% for local slope prediction and
3.02 ± 1.52% for local curvature prediction. It can be seen that local slope
prediction leads to a slight overshoot when object curvature increases.

(B) Equation 16 (prediction using slope) is used to predict radial distance for an
object with an abrupt change in curvature (i.e., an edge). Average prediction
error is 0.44 ± 0.12%. (C) Equation 17 (prediction using curvature) is used to
predict radial distance for the same object as in (B). Average prediction error is
1.05 ± 5.12%. In both (B) and (C), the inset enlarges the area around the edge.

in contrast, shows that prediction using local object curvature
(Equation 17) was accurate until the abrupt change was reached,
at which point there was a spike in the absolute percent error of
the prediction. The prediction error of 0.44 ± 0.12% for predic-
tion using local object slope was lower than the prediction error
of 1.05 ± 5.12% for prediction using local object curvature.

In summary, these simulation results demonstrate that local
object curvature more accurately predicts future contact points
on regions of objects with no distinct edges, but that when objects
have distinct edges, prediction using local object slope is more
accurate. Of course, this in turn raises the question of what it
means for an object to have a “distinct edge.” Mathematically, it
must be an edge in the sense that there is a discontinuity in the
curvature between measurements, which is clearly related to the
spatial scale of the object relative to the spacing of the whiskers.
We investigate this in the next section.

IMPORTANCE OF WHISKER SPACING
The spacing between the whiskers on the object surface places
limits on the maximum curvature that can be sensed. Equation 19
defines κmax, the maximum discriminable curvature:

κmax = 1

r
= 1

d + �
(19)

where r is the radius of the osculating circle defining κmax, d is the
vibrissa spacing, and � is an arbitrarily small distance.

In the present work, we assumed that the spacing between the
whiskers on the object surface was approximately equal to the
spacing between them at their base. This is a reasonable approxi-
mation for the present work, in which the whiskers are parallel to
each other, but is unlikely to be valid for the real rat.

Figure 7A illustrates the relationship expressed in Equation 19.
The distance � is added to the vibrissa spacing because a force
must be applied to the vibrissae to find a contact point. The lim-
iting case is finding the curvature of a cylinder with radius r and
� = 0. With vibrissae spaced at d = r, the object could only apply
a force to bend at most two of the vibrissae. In order to make

a discrete curvature approximation, a minimum of three con-
tact points are required to define curvature. Therefore, � must
be strictly greater than zero if the measurement of curvature is
desired.

To demonstrate the effect of relative vibrissa spacing on pre-
diction error, prediction was simulated over hyperbolic spirals of
various sizes. The hyperbolic spiral was chosen as the test object
because it can be translated past the vibrissa array in such a way
that curvature decreases approximately linearly. In these simu-
lations, the multiple-vibrissa prediction method was used, with
vibrissa spacing set to 1 cm. The size of the spiral test object was
decreased for each case to illustrate the effect of relative vibrissa
spacing.

Figure 7 shows the simulated test object on two different
length scales, as vibrissa spacing stays constant. The left side of
Figure 7B shows an object large on the scale of inter-vibrissa spac-
ing, while the right side of Figure 7B shows an object small on
the scale of inter-vibrissa spacing. Figure 7C illustrates that pre-
diction error increases as the test object decreases in size. This
increase in error is unsurprising, and occurs for two reasons. First,
the relative change in distance between the most forward mea-
surement and the predicted radial distance is more pronounced
as the object decreases in size. More importantly, the spacing
between vibrissae defines the resolution of the array, and it is
decreasing relative to the change in curvature that is occurring.
This simulation illustrates the importance of vibrissa spacing to
prediction—though gradual curvature changes can be accurately
predicted with good spatial resolution, prediction suffers when
resolution decreases.

HARDWARE RESULTS: VALIDATION OF THE TRANSLATIONAL
SWEEP ALGORITHM
We next aimed to validate these simulation results in hardware.
However, before we could do so, we needed to experimentally val-
idate the translational sweep algorithm proposed by Solomon and
Hartmann (2010). We implemented the translational sweep algo-
rithm on our hardware array of whiskers (see Methods) to extract
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FIGURE 7 | Effect of vibrissal spacing. (A) Maximum curvature
discriminable by a given whisker spacing. (B) Prediction of radial distance
on different curvature scales with 1 cm whisker spacing. The simulated
object is shown in black, the starting positions of the vibrissae in blue,
and the predicted contact points in red. The length of the spiral on the

left is five times longer than the length of the spiral on the right. (C)

Quantification of the increased prediction error as the scale of the object
decreases relative to inter-vibrissal spacing. Whisker spacing is normalized by
the length of the object. As relative vibrissal spacing increases, error
increases linearly.

FIGURE 8 | Radial distance estimation, in hardware, using a

translational sweeping algorithm to calculate radial distance. Contour
extraction was performed as a 2.5 cm diameter cylinder was translated past
a single whisker. The estimated data points (blue) are plotted over a solid
line (black) indicating the actual profile of the cylinder. The maximum
difference between actual object position and the estimated contact point
was 0.1 mm.

the contour of an object as it was translated past one or more vib-
rissae in the array. Figure 8 shows results from a trial in which a
2.5 cm diameter cylinder was translated past a single vibrissa at a
velocity of 2 cm/s. The maximum difference between the actual
object position and the estimated contact point at any given time
was 0.1 mm, within the limits of measurement error.

HARDWARE RESULTS: IMPLEMENTATION OF PREDICTION WITH
A SINGLE VIBRISSA: OBJECT OF CONSTANT CURVATURE
Having validated the translational sweep algorithm, we next
aimed to test the two prediction methods in hardware. Figure 9A
presents the same contour extraction data as in Figure 8,
but here we also apply the prediction algorithms. Specifically,
Figure 9A shows the contact points prediction using local object

FIGURE 9 | (A) Predicted radial distance plotted over a solid line indicating
the actual profile of the cylinder. Predicted radial distances use local object
curvature (blue) or local object slope (red). (B) Prediction error as the object
diameter increases. There is no statistical difference between errors
(p > 0.05).

slope (Equation 16) and prediction using local object curvature
(Equation 17). These predictions are plotted over a curve repre-
senting the actual surface of the cylinder. Using different numbers
of past time steps did not significantly affect the accuracy of
the prediction, which stayed fixed at an average level of 1.3 ±
1.25% for prediction using local object slope, and an average
level of 1.1 ± 0.96% for prediction using local object curva-
ture (Figure 9B). Prediction error was calculated according to
Equation 18. Because there was no difference between numbers
of past time steps used, five points were used for the rest of the
single-vibrissa experiments presented in this paper. In the sec-
ond part of this experiment, cylinders with diameters of 2.5 cm,
4.4 cm, 5.0 cm, 6.3 cm, and 10 cm were passed by the array at a
velocity of 2 cm/s. As expected, there is no significant effect of
object diameter on prediction error. The error across the trials
for prediction using local object curvature was 1.40 ± 1.43%.

HARDWARE IMPLEMENTATION OF PREDICTION WITH MULTIPLE
VIBRISSAE: OBJECT OF CONSTANT CURVATURE
Neurons in the trigeminal nuclei have receptive fields that include
multiple vibrissae, which may enable the rat to estimate the
surface gradient at a single time point. For this technique to
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FIGURE 10 | Predicted radial distance using multiple whiskers.

The predicted future contact points (red) line up very well with the actual
surface of the cylinder (black line). Prediction error is 1.13 ± 1.2%. Each
different color corresponds to contact points from separate whiskers.

be viable, the chosen vibrissae must all be touching the object
at once. The spacing between adjacent vibrissae in the final
design of the array (Figure 3) is 1.5 cm. To ensure there were
times when all five vibrissae touched the test object concur-
rently, only the 10 cm diameter cylinder was used for these
constant curvature trials. Figure 10 shows the predicted future
contact points for the vibrissa array as the array moves for-
ward. Each predicted point is 1.5 cm further along the object
than the lead vibrissa was at the time of the point’s prediction.
Since the five points of contact come from five different vib-
rissae, the predicted curvature gradient is implemented over a
much larger spatial scale. Small errors in distance estimation
result in larger deviations in the predicted future radial distance
estimate.

HARDWARE IMPLEMENTATION OF PREDICTION WITH A SINGLE
VIBRISSA: OBJECT WITH ABRUPT CURVATURE CHANGE
The results of the previous two sections show that prediction
using local object curvature can accurately predict future con-
tact points for an object with constant curvature. In the world,
however, such objects are rarely found. We did not implement
prediction using the multiple vibrissa method on this object
because the main difference between the spatial scales over which
we were making abrupt changes was better represented by the
single vibrissa method.

To show the effect of abrupt changes in object curvature on
prediction, a simple case was examined. Figure 11A shows the test
object. The object has three distinct constant curvatures with no
smoothing transition from one to the next. The radii of curvature
for the sections were 2.5 cm, 3.2 cm, and 2.2 cm. The object was
moved past the vibrissa array using linear actuation at a velocity of
2 cm/s. Prediction was performed using local object curvature for
each vibrissa, with predicted contact points shown in Figure 11B.

It can be seen from Figure 11C that the absolute percent error
of the prediction remains small during the first section of constant
curvature. At the transition to the second curvature, the absolute
percent error increases, with the maximum value more than qua-
drupling the prediction error during the first section. Once the
vibrissa has been able to sense the second curvature for a short
time, absolute percent error returns to baseline. The second tran-
sition is similar to the first. A closer examination of Figure 11B
shows fewer predicted points during the times when the algo-
rithm is least accurate. The reason for this is that the vibrissa
slips quickly over the concavity in the object, covering the distance
more quickly than during slip-free data collection. This longitu-
dinal slip causes a significant increase in error in the estimation of
distance.

HARDWARE IMPLEMENTATION OF PREDICTION WITH MULTIPLE
VIBRISSAE: OBJECT WITH GRADUAL CURVATURE CHANGE
We tested the hardware vibrissa array with a section of a hyper-
bolic spiral that had an approximately linear decrease in curvature
as the object was translated past the whiskers.

Figure 12 shows the estimate of predicted future radial dis-
tance when the vibrissa array was passed by an object with grad-
ually changing curvature. Figure 12A shows the actual object.
Figure 12B shows a trial using the single vibrissa method, which
corresponds to the situation where spacing between the data
points is small relative to the change in curvature. The prediction
error of 0.97 ± 1.4% is very similar to the error for an object with
constant curvature (1.1 ± 0.96%). In Figure 12C, the vibrissa
base points were evenly spaced at 1.5 cm intervals, and the multi-
ple vibrissa method was used. This increase in spacing mirrored
the decrease in size of the object in the simulations, and resulted in
an increase in prediction error. Since the gradual change in cur-
vature is from high curvature to lower curvature, the predicted
future contact points lie mostly inside the actual curve. Prediction
error for this trial was 12.7 ± 7.11%, though the error decreases
to 11.9 ± 6.97% when the largest outlier is removed.

DISCUSSION
This paper has demonstrated that simple algorithms can be used
to predict future contact points on an object. Prediction is accu-
rate for objects that have constant and/or gradually changing
curvature as long as the distance between vibrissae is small relative
to the change in curvature. Abrupt changes in object curvature
result in jumps in absolute percent error of the prediction.

PREDICTION ALGORITHM PERFORMANCE
Two different algorithms for prediction were described in the
results section. Prediction using local object slope is only accu-
rate when the curvature being measured does not change much
between estimated contact points, but it can accommodate for
abrupt changes in curvature (e.g., an edge). Prediction using
local object curvature was shown to be more accurate for both
objects with constant curvature and objects with gradual changes
in curvature.

In all cases, vibrissa spacing makes a difference in accuracy
of prediction. This result is hardly surprising, since the limit-
ing factor is essentially sensor resolution. The main advantage of
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FIGURE 11 | Prediction of future contact points demonstrated in

hardware using an object with abruptly changing curvatures. (A) Test
object, consisting of three circles placed in a row. The curvature of each circle
is indicated; the curvatures at which the circles join is very high and was not

quantified exactly. (B) Predicted contact points mapped onto the test object.
At the transition between curvatures, the absolute percent error of the
prediction increases substantially. (C) Absolute percent error of the prediction
for each of the predicted data points.

FIGURE 12 | Hardware prediction on an object with gradually changing

curvature. (A) Picture of the test object, designed to be a close
approximation to a hyperbolic spiral. The whiskers translated along
the bottom face of the object from left to right as shown by the

arrow. (B) Spacing of contact points is small relative to object size,
resulting in a prediction error of 0.97 ± 1.4%. (C) Spacing of contact
points is large relative to object size, yielding a prediction error of
12.7 ± 7.11%.

widely spaced vibrissae is the ability to predict further ahead in
space. Since information about the sensed object is spread over
a wider distance, it is more likely that the estimated curvature
will be a reflection of the overall curvature of the object rather
than a measurement of a local deviation from the actual object
curvature.

These observations lead to the hypothesis that vibrissa spac-
ing represents a trade-off between accuracy and predictive utility.
For wall following, we anticipate that the rat will protract its
vibrissae far forward and maximize spacing between the tips,
because predictive sensing over a large spatial scale is important.
For edge detection tasks, accuracy becomes more important so
we anticipate that the vibrissal tips will be spaced more closely
together.

A COMPUTATIONAL MECHANISM FOR THE INSTANT
DETECTION OF MOTION
Motion detection, as well as the ability to distinguish self-
movement from environmental movement, is critical to animal
survival. Behaviors such as escape or predation must link motion

detection to immediate motor action. For these behaviors, the
quality of the sensory data obtained is largely irrelevant, as long as
it is sufficient to trigger the appropriate motor action. We suggest
that a mismatch between predicted and actual sensory input may
serve to direct attention.

In this work, we have presented specific examples of how cal-
culating terms of the total derivative might be used by a moving
rat to track an object within its vibrissal sensory array. If an object
is moving in the vibrissal field, there will be a mismatch between
actual and predicted input that is exactly equal to how the world
is changing in time. In the next time step, the animal can use
this mismatch to compute the relative velocity between its own
movements and movements in the world. In other words, the ani-
mal can compare predicted and actual sensory data obtained to
estimate the quantity δAenv

δt . Of course, if the fluctuations in the
environment (i.e., movements of objects in the world) are unpre-
dictable, then the animal will never succeed in finding an accurate
estimate. Because objects on the scale of the rat are strongly dom-
inated by inertial forces, however, many changes in the world will
have predictable temporal trajectories (e.g., a rolling tin can).
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ADVANTAGES OF USING PREDICTION DURING WALL FOLLOWING
BEHAVIOR
During wall-following behavior, a rat maintains a small separa-
tion between itself and the wall while traveling at a relatively high
velocity. The rat can maintain this separation even when walls
curve, however, since the rat has mass, and it moves at a high
velocity, changing direction takes time and energy. Following a
curving wall would be easier if the rat could predict the future wall
profile using its vibrissae. More specifically, if a rat could use just
radial distance measures to predict the upcoming wall contour,
it could start to change direction sooner, reducing inertial delays
and saving energy. Encoding by its vibrissa array to determine
where the wall was likely to be in the future, it would save energy
and allow the rat to travel along the wall at a higher velocity.
With these prediction algorithms that prediction could be accom-
plished at a very low level of processing. The algorithms presented
here suggest that this type of prediction could be achieved with a
very low level of computation.

POSSIBLE IMPROVEMENTS IN VIBRISSA SENSING/PREDICTION
An examination of the results presented in Figure 11 shows pre-
dicted data points that are spaced much less densely in the
concave regions of the object. Data are less dense in these sec-
tions because the vibrissa slips, and because only the tip of the
vibrissa contacts during part of the movement. When the vibrissa
tip is the only part of the vibrissa that contacts the object, radial

distance cannot be accurately calculated with our algorithm. For
artificial whiskers like the ones presented in this work, these sorts
of tip contacts can occur at several radial distances near the full
whisker length. In order to calculate radial distance for tip con-
tacts, we need a measure of the axial force being applied to the
vibrissa tip, where axial force is defined along the axis of the vib-
rissa. Future versions of the vibrissa array presented in this paper
will be able to sense axial force along with bending moments at
the vibrissa base.

The artificial whiskers used in this work were cylindrical, but
real rat whiskers taper linearly. Tapering the whisker confers at
least two advantages. First, whisker taper increases sensitivity
to small contact forces (Williams and Kramer, 2010; Solomon
and Hartmann, 2011). Second, when used in conjunction with
an axial force sensor (not used in the present work), a tapered
whisker ensures that the mappings between bending moment
and axial force are one-to-one with radial distance and θpush, the
angle through which the whisker has rotated against the object
(Solomon and Hartmann, 2011).
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