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Abstract

Several recent studies have investigated the problem of object fea-
ture extraction with artificial whiskers. Many of these studies have
used an approach in which the whisker is rotated against the object
through a small angle. Each small-angle “tap” of the whisker pro-
vides information about the radial distance between the base of the
whisker and the object. By tapping at various points on the object,
a full representation of the surface can be gradually constructed in
three-dimensional space. It is clear, however, that this tapping method
does not exploit useful information about object contours that could
be extracted by “sweeping” the whisker against the object. Rotating
the whisker against the object through a large angle permits the col-
lection of a sequence of contact points as the whisker slips along the
surface. The present paper derives an algorithm based on a numer-
ical cantilever beam model of the whisker to measure object profile
shape over a single large-angle whisker rotation using only informa-
tion about torque and angle at the whisker base. The algorithm is
validated experimentally using three different object shapes. As the
method does not require measurement of force, it is well suited for
implementation on an array of robotic whiskers to accomplish quick
and precise object feature extraction.

KEY WORDS—whisker array, tactile perception, feature ex-
traction, cantilever beam, biomimetic whisker, whisker slip, rat
whisker system, vibrissal active touch.
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1. Introduction

Mammalian whiskers have attracted increasing interest from
engineers seeking to imitate their numerous desirable sensing
properties. Whiskers are physically robust, mechanically sim-
ple, and yet can precisely extract object shape, texture and the
velocity of fluid flow. The diverse capabilities of whiskers are
amply demonstrated by the animals that use them to perform
difficult behavioral tasks� for example, seals can track hydro-
dynamic trails (Dehnhardt et al. 2001) and rats can distinguish
small differences in aperture width (Krupa et al. 2001). Ro-
botic whiskers have been used for various types of sensing
tasks (for a review, see Solomon and Hartmann (2008)), and
several recent studies have specifically addressed the issue of
three-dimensional (3D) feature extraction, wherein the goal is
to infer the shape of an object by repeated contact with one or
more whiskers. These studies have generally taken one of two
approaches: whisker tapping or whisker “sweeping”.

The first approach, whisker tapping, is to rotate or translate
the whisker(s) against an object by a small angle to infer where
along the length of the whisker initial contact occurred (radial
distance extraction). Using this information, along with infor-
mation about the angle of initial contact and location of the
whisker base, allows estimation of the contact point location
in 3D space for each whisker/whisk.

Whisker tapping has been relatively well studied. Tsu-
jimura and Yabuta (1989) derived and demonstrated a general
method of estimating contact point location of a stiff probe
pressing against an object using a six-axis force/torque sen-
sor. Ueno et al. (1998) measured vibration frequencies at the
base of a flexible beam using a torque sensor to estimate con-
tact point position. Kaneko et al. (1998) used a two-axis ac-
tuator, two-axis torque sensor and a flexible beam to deter-
mine contact positions along an object based on the rotational
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compliance. Clements and Rahn (2006) applied a large an-
gle elastica model as the basis for determining contact point
location with a two-axis actuator, flexible beam and six-axis
force/torque sensor. Kim and Möller (2007) attached multiple
flexible beams with two-axis torque sensors to an actuated sup-
port plate, showing that whisker arrays can provide basic ob-
ject shape information in a single whisk. Previous work from
our laboratory has shown that detailed shape information can
be extracted by using a whisker array and combining data from
several whisks (Solomon and Hartmann 2006), and accounting
for lateral slip of the whiskers along the object (Solomon and
Hartmann 2006, 2008).

The second approach, whisker sweeping, involves mov-
ing the whisker along or against the object far past the lo-
cation of initial contact in order to estimate a collection of
contact point locations as the whisker slips along the surface.
Whisker sweeping has received less attention in the literature
than tapping. Russell (1992) swept the tip of a flexible curved
beam with a binary (touch or no-touch) sensor along objects
with a Puma robot to measure their profile. Wilson and Chen
(1995) used a pneumatic bellow tube actuation system and
closed-loop control to sweep the tip of a flexible beam with
a 2D torque sensor along objects and estimate their profiles.
Scholz and Rahn (2004) rotated a flexible beam equipped with
a six-axis force/torque load cell against objects and used a
large-angle elastica model to repeatedly compute the entire
whisker shape and contact point, providing an accurate 2D
object profile measurement with a single whisk. Critical dif-
ferences between this method and that presented here will be
addressed in Section 5.

The present paper develops and demonstrates an alternative
method to accomplish whisker sweeping. The method is based
on incrementally inferring the change in contact point loca-
tion through continuous measurement of torque (i.e. bending
moment) at the whisker base. This approach was inspired by
the ultimate goal of constructing a whisker array that mimics
the structure of that found in the rat. This places two funda-
mental constraints on the system: (1) each whisker much ro-
tate about its base, where the bending moment is measured�
and (2) all whiskers must rotate in unison, thus reasonably ap-
proximating a natural whisking motion and also allowing for a
simple array design that requires only a single motor for actu-
ation (Schultz et al. 2005). Previous research in our laboratory
has already established a method for performing initial contact
point measurement under these conditions (Solomon and Hart-
mann 2008). A natural extension to these results is to develop
a sweeping technique that allows continued estimation of con-
tact point beyond initial contact, thus providing the maximum
amount of available shape information per whisk.

2. Lateral Slip, Longitudinal Slip and Axial Slip

There are two distinct ways that a whisker can slip along an
object. Lateral slip occurs when the object surface at the con-

Fig. 1. There are two ways a contact point can move along an
object: (a) lateral slip and (b) longitudinal slip. Note that al-
though here they are depicted independently, they can in gen-
eral occur simultaneously.

tact point is slanted relative to the plane of rotation and the
angle of the friction cone is not large enough to prevent out-
of-plane movement, as depicted in Figure 1(a) (Solomon and
Hartmann 2008). Lateral slip can generate significant errors
in the estimate of radial distance, and methods have therefore
been devised either to prevent it from occurring by reorienting
the plane of rotation (Kaneko et al. 1998� Clements and Rahn
2006), or to passively account for it (Solomon and Hartmann
2008). The latter method is most accurate when an estimate of
surface friction is available. Longitudinal slip occurs when the
curvature of the object within the plane of rotation at the con-
tact point is finite (not a point-object or an object’s corner), as
depicted in Figure 1(b). Kaneko et al. (1998) showed that (in
the absence of lateral slip) longitudinal slip has a small effect
on radial distance extraction unless the object curvature at the
contact point is very small or the contact point is very close
to the base. Conveniently, longitudinal slip affords the oppor-
tunity to sense additional contact points as the whisker slips
along the object periphery, providing further information about
object shape over a single whisk. The algorithm presented here
accomplishes this task.

It is important to understand that the above definitions of
lateral and longitudinal slip describe the movement of the con-
tact point along the object in Euclidean space. The contact
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point can also move along the whisker, even in the absence
of lateral and/or longitudinal slip. For example, if a whisker
rotates in a plane against a point object, the location of contact
on the whisker will change, but the location of object contact
will remain constant. This type of contact point movement on
the whisker we term axial slip. In the analyses that follow, we
are concerned primarily with longitudinal slip, as it directly
determines the regions of the object being sampled.

3. Technical Approach

3.1. Determining the Initial Contact Point

We model an artificial whisker sensor typical of those used
in previous studies: a thin, straight, cylindrical, flexible beam
(e.g. spring steel or Nitinol wire) with a torque sensor at the
base, situated to measure the beam’s bending moment at its
axis of rotation, which is fixed. In addition, we assume that the
environment contains only static, convex objects that are rigid
relative to the whisker, that the whisker bends only within its
plane of rotation (no lateral slip), and that contact occurs at
a discrete point along the whisker length, not at the tip. We
describe methods to weaken these restrictions in Section 5.

The sensing process begins with the whisker freely rotating
in the air. When a small moment threshold Mthresh is exceeded,
indicating initial object contact, the first step is to record the
current absolute whisker base angle �contact (i.e. the encoder
angle), and estimate the radial distance to the first contact point
r0, using

r0 � 3E I
�0

M0
� (1)

where E is the Young’s modulus, I is the area moment of in-
ertia, �0 is a small pushing angle (typically about 3�) beyond
initial contact (where Mthresh is reached), and M0 is the mo-
ment sensed in the plane of rotation at the whisker base. This
equation has shown to reliably estimate radial distance with
very high precision (Kaneko et al. 1998). Calculation of the
contact point location in Cartesian coordinates with respect to
the base is useful:�

� dx�0

dy�0

�
� �

�
� r0

�r0 � �0

�
� � (2)

Note that (2) assumes �0 is small, so that sin�0 � �0. Fig-
ure 2 shows the state of the whisker after measurement of the
first contact point. As the whisker continues to rotate against
the object, the contact point will slip along the object in a way
that depends on the local shape of the object. The sweeping al-
gorithm described in the present paper is designed to infer that
local shape based on the continued measurement of torque, as
outlined in the following section.

Fig. 2. Geometry of whisker after rotation by �0. The x-axis
of the local coordinate system is coincident with the line tan-
gent to the whisker base, and the origin is at the whisker base.
The magnitude of �0 is exaggerated here, as 3� is typically
sufficient.

3.2. Determining Additional Contact Points Using the
Sweeping Algorithm

The basic premise of the algorithm is that given the current (it-
eration i� i � 0) estimated contact point location relative to the
base (dx�i � dy�i ) (or (ri , � i ) in polar coordinates), its new posi-
tion after a small incremental rotation d� can be inferred based
on the new measured moment Mi	1. Throughout the following
derivation, it is important to note that there are two angles of
interest: � and �. The deflection angle � is defined as the angle
between the line tangent to the whisker base and the line that
connects the whisker base to the current contact point, that is,

� i � tan�1

��dy�i

dx �i

�
�

where the negative sign ensures that � is a positive quantity.
The rotation angle � is the total angle that the whisker has ro-
tated since object contact. In general, � and � differ slightly, as
depicted in Figure 3. However, in the absence of longitudinal
slip, they are identical. Longitudinal slip does not occur when
the contact point has infinite curvature (e.g. a point-object or
the sharp corner of an object) and is negligible during the ini-
tial rotation (i.e. �0 � �0) unless the object curvature at the
contact point is very small and/or the contact point is very
close to the base, as mentioned earlier.

The derivation begins by decomposing the translation of the
contact point during a single iteration into two non-orthogonal
components. The first component is a nominal deflection 
�i

tangent to the imaginary circle centered at the base and inter-
secting the current contact point

�
dx�i � dy�i

	
. The second com-

ponent dsi represents the longitudinal slip, occurring paral-
lel to the longitudinal axis at the contact point (angle � i ) and
pointing towards the base. These components are depicted in
Figure 4 and can be expressed as�

� dx�i	1

dy�i	1

�
� �

�
� dx�i

dy�i

�
�	 
�i 	 dsi � (3)
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Fig. 3. Illustration of difference between � and � . The whisker
rotates by �i � 30� against a circle of radius 1 at an initial
radial contact distance r0 � 1. Because of longitudinal slip,
the radial contact distance significantly decreases (becoming
ri � 0�82), and the deflection angle increases at a slightly
slower rate than does � (becoming � i � 28�3�). These num-
bers were numerically generated using the method described
in Appendix A.2.

Fig. 4. Illustration of a single iteration of the sweeping algo-
rithm. The magnitude of d� is exaggerated here, as ~1� is typi-
cally used. Negative error means that (5) yields a value smaller
than numerical “ground truth.”

The result of the 
�i component is immediately evident, shifting
the contact point by magnitude ri �d� concentric with the base,
allowing us to write


�i � �ri � d� �
�
� sin � i

cos � i

�
� � (4)

Finding the direction and magnitude of dsi is more difficult.
These two problems will now be treated independently.

As stated earlier, dsi is oriented parallel to the longitudinal
axis of the whisker at the contact point, at contact angle � i . For
small � , it is straightforward to show using Euler–Bernoulli
beam theory applied to the classical model of a cantilever beam
with concentrated end load, that

� � 3

2
� (5)

for small deflections (see Appendix A.1). However, assump-
tions of linearity are violated for angles larger than about 10�,
and hence we turn to a numerical elastica model to compute
the relation between � and � for larger deflections.

Fig. 5. Deflection angle analysis. (a) Relationship between
contact angle � and deflection angle � for a cantilever beam
with concentrated end load. The solid line is the numerical re-
sult, and the dashed line is from (5). (b) Error incurred using
(5) as a function of � .

The model considers a static cantilever beam divided into n
nodes, with a concentrated load F at arc length sF � 1 along
the beam. Friction is assumed to be zero, and the force there-
fore acts perpendicular to the longitudinal axis at the force lo-
cation. Starting at node 1 where the force is applied, the shape
of the beam is iteratively computed node-by-node towards
node n at the base using a version of the Euler–Bernoulli equa-
tion. Repeating this procedure for a range of forces provides
a sequence of beam shapes for increasingly large deflections,
with units automatically normalized by E, I and sF . The result-
ing table can be efficiently interpolated to generate the beam
shape, curvature or moment at the base, and contact angle � for
various methods of query, including (dx � dy), (r� � ), and (sF , F ,
E I ). Details can be found in Appendix A.2.

Using the results of the numerical model, Figure 5(a) plots
� versus � for up to � � 60�. Perhaps surprisingly, Equa-
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tion (5) continues to hold with very high accuracy well past the
regime where small angle assumptions are valid. Figure 5(b)
shows that use of (5) results in only –0.35% error at � = 30�,
and –1.63% error at � = 60�. Since sweeps of less than 60� are
likely to be used in practice, Equation (5) is a very good ap-
proximation even for large angles and thus is used to estimate
the orientation of dsi .

The only remaining task is to formulate a method of esti-
mating �dsi �, the magnitude of dsi , which (neglecting friction)
depends entirely on the curvature of the object surface at the
current contact point. If the curvature is infinite (i.e., the con-
tact point is the corner of an object or a point-object), then �dsi �
= 0� otherwise, �dsi � 	 0. To estimate �dsi �when it is non-zero,
we express it as a function of the new moment at the whisker
base Mi	1, as well as two numerically computed quantities.

Defining M��i as the moment after deflection �i and dMi
ds
as the rate of change of moment with respect to �dsi � (follow-
ing along the beam towards the base) we can write

Mi	1 � M��i 	 dMi

ds
� �dsi � � (6)

Solving for �dsi �, we have

�dsi � �
�

Mi	1 � M��i
	 � ds

dMi
� (7)

Consolidating (5) and (7),

dsi �
�

Mi	1 � M��i
	 � ds

dMi
�
�
� � cos

�
3
2� i
	

sin
�

3
2� i
	

�
� � (8)

Finally, combining (3), (4) and (8), we have�
� dx�i	1

dy�i	1

�
� �

�
� dx�i

dy�i

�
�� ri � d� �

�
� sin � i

cos � i

�
�

	 �
Mi	1 � M��i

	 � ds

dMi

�
�
� � cos

�
3
2� i
	

sin
�

3
2� i
	

�
� � (9)

As Mi	1 is measured by the torque sensor, there are only
two remaining unknown variables needed to find the new con-
tact point: M��i and dMi
ds. Again, the numerical model pro-
vided in Appendix A.2 is used, and the results are shown in
Figure 6. The curves are normalized using r as a scaling para-
meter, so that M� has units of



E I
r

�
, and dM
ds has units of


E I
r2
�
. Also shown are the results of cubic polynomial fits to

both curves (dashed lines), which serve as convenient methods
of implementing these relations. The polynomials contain no
degree-zero term since the underlying function passes through

Fig. 6. Relationships between moment and deflection angle
used by the sweeping algorithm: (a) M� versus � � (b) dM
ds
versus � . The solid lines are the numerical data, and the dashed
lines are cubic polynomial fits to the data. See Appendix A.2
for details of the numerical model.

the origin, and were fit by minimizing the sum of squared er-
rors. The resulting equations are as follows:

M��i � E I

ri

� ��0�6673 � �3
i � 0�0354 � �2

i 	 3�0069 � � i
	
�(10)

dMi

ds
� E I

r2
i

� �1�5289 � �3
i � 0�8402 � �2

i 	 1�6799 � � i
	
� (11)

where � i is in units of radians and ri �
�

d2
x�i 	 d2

y�i . Note that

(10) and (11) have the relevant normalization factors included,
but also that the bending stiffness EI may not be obtainable
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with high precision. In practice, it is not necessary to know EI,
as the torque sensor is calibrated to units of curvature at the
whisker base (e.g. from voltage), in which case EI effectively
becomes unity. This is addressed further in Section 4.

At each step of the algorithm, the current contact point is
computed with respect to the current local �x-y� reference
frame. Therefore, conversion to coordinates in a global �X-
Y � reference frame is necessary. This is straightforward using
a rotation matrix:�

� dX�i

dY�i

�
� �

�
� cos� i sin� i

� sin� i cos� i

�
�
�
� dx�i

dy�i

�
� � (12)

where � i � �contact 	 �i , and is the angle tangent to the
whisker base in the global coordinate system.

Before testing the sweeping algorithm in hardware, it was
validated numerically by simulating the rotation of a cantilever
beam against circles of varying diameter and at varying dis-
tances. The beam shapes and moments at the base were com-
puted using the numerical model in Appendix A.2. Using �0 =
3� and d� = 1�, the extracted contact points aligned nearly per-
fectly along the circles’ perimeters. As expected, the smaller
�0 and d� were scaled, the closer the alignment between con-
tact points and surface.

For completeness, we note that in certain applications, the
whisker may need to be linearly translated instead of rotated
against the object. Modification of the algorithm for translation
is straightforward, and is included in Appendix A.3.

4. Experimental Results

The algorithm was tested using aluminum bars with circu-
lar-, hexagonal- and square-shaped cross sections. The robotic
whisker used in these experiments has been used in previous
research (Solomon and Hartmann 2006, 2008). Typical of ro-
botic whisker designs, it consists of a straight, flexible wire
to act as the vibrissa, attached to a torque sensor at the base
(the “follicle”). The vibrissa is 0.5 mm in diameter and 5 cm
in length, and composed of superelastic Nitinol (E � 80,000
MPa) to ensure retention of its original straight shape. The
follicle is a small aluminum block (4 � 4 � 8 mm) with a
strain gage attached to each of its four exposed faces. Although
the follicle is capable of sensing both orthogonal components
of moment, no lateral slip occurred in these experiments and
hence only two of the four strain gages were used. The follicle
was attached to an aluminum bar with a set screw, and the bar
was attached to an AC servomotor for actuation. The base of
the vibrissa (and tip of the follicle) resides at the resulting axis
of rotation, ensuring adherence to the sensing model. The cen-
ters of the test objects were placed 4 cm in front of the whisker
base, as shown in Figure 7.

Before experimental data were taken, calibration trials were
performed to convert the strain gage voltage output to curva-
ture at the whisker base. Curvature and moment are linearly

Fig. 7. The experimental setup. The whisker was rotated
against aluminum bars with circular-, hexagonal- and square-
shaped cross sections (hexagonal shown here). The vertical ar-
row indicates the axis of rotation. The protractor shown under-
neath the object was used to manually set its orientation.

related by the bending stiffness EI (see (19)). In practice, it is
more convenient to calibrate the follicle to curvature instead of
moment since knowledge of E and I is not required. All exper-
imental and calibration data were low-pass filtered at 800 Hz,
sampled at 2,000 Hz, and passed through a zero-phase digital
filter with a cutoff frequency of 10 Hz.

The follicle was calibrated by rotating the whisker at a
speed of 10� s�1 through an amplitude of 60� against a slen-
der peg at a radial distance of 4 cm (starting out barely touch-
ing). Using (10) with EI set to 1 allows the true curvature to
be inferred for all values of � . Plotting curvature versus volt-
age generates a calibration curve, which was stored as a cubic
spline, to be used to convert the experimental data from voltage
to curvature. The curve starts out linear, but levels off slightly
as the curvature becomes large.

Each experimental trial occurred as follows. The whisker
started at rest, placed at a radial distance of 4 cm and oriented
–30� relative to the object’s center. At a speed of 10� s�1, the
whisker was rotated against the object with an amplitude of
60�, immediately retracting back to –30�. The whisker was
held stationary while the object was rotated about its center
by 30�. This procedure was repeated an additional 11 times,
resulting in the whisker contacting all or almost all of the ob-
jects’ perimeters. Although in actuality we are keeping the lo-
cation of the whisker base fixed in space and rotating the object
between whisks, this is functionally equivalent to having the
whisker base move around the fixed object between whisks, in
a circular manner.

After filtering the data, Equations (1) and (2) were used to
compute the initial contact point using �0 = 3�. Subsequent
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Fig. 8. Results of implementing the sweeping algorithm on smooth and rough objects. Top row: sweeping results for objects
with a smooth surface. Bottom row: sweeping results for rough objects (covered in 120 grit sandpaper). A total of 12 whisks
were performed at evenly spaced (30�) intervals around the objects. Initial contact points are indicated by small white circles
and subsequent points computed by the sweeping algorithm are indicated by smaller black dots. Thin lines indicate the actual
underlying shape profile. For the first whisk, the orientation of the whisker upon object contact is indicated by the dashed line,
and subsequent whisker shapes are indicated in 10� increments by solid lines. These shapes were generated using the numerical
model in Appendix A.2. This was done for illustrative proposes only. Calculation of the full whisker shape at each time step is
not required by the sweeping algorithm presented here.

points were generated by iteratively applying (9)–(11), with
d� = 1�. This procedure gives the contact points within the lo-
cal whisker reference frame (see Figure 3)� hence conversion
to a global frame using (12) was necessary before plotting.
The results, shown in the top row of Figure 8, demonstrate that
the sweeping algorithm accurately estimates successive con-
tact points as the whisker slips along the perimeters of all three
shapes.

The sweeping algorithm assumes no friction between the
whisker and the object, which influences (5), (10) and (11).
These equations were derived under the assumption that the
direction of the contact force is normal to the whisker at the
contact point, which is increasingly inaccurate for a rough
object as � becomes large. To test the effect of friction, the
experiments were repeated with 120 grit (moderately rough)
adhesive-backed sandpaper stuck to the objects. The bottom
row of Figure 8 shows that although some precision is lost, the
general object profile shapes are again faithfully reproduced.
Increasing the friction further would likely result in increas-

ingly inaccurate results, but such rough objects are unlikely to
be encountered in most applications.

Another important parameter is the whisking speed. The
experiments described here used a slow speed (10� s�1) to
minimize inertial effects, but much faster speeds can be im-
plemented in practice. The above experiments were repeated
using a whisking speed of 90� s�1 with similar results for both
smooth and rough surfaces (data not shown). Qualitatively,
the only significant difference involved a greater dispersion of
contact points at the edges of the smooth objects. Increasing
the whisking speed significantly beyond about 90� s�1 should
be done with caution, as inertial effects will increasingly gen-
erate torque signals at the base. Possible methods to mitigate
inertial effects might include insuring smoothness of the ac-
tuation trajectory, e.g. by integrating some form of machine
learning component with the algorithm.

To give a quantitative measure of contact point extraction
accuracy, ideally we would have measured the distance from
each estimated contact point to its actual contact point, but do-
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Table 1. Quantification of Estimated Contact Point Accu-
racy

Experimental Average Average
conditions error (mm) normalized

error (%)

Smooth surface, � = 10� s�1 0.32 0.85

Rough surface, � = 10� s�1 0.88 2.39

Smooth surface, � = 90� s�1 0.35 0.92

Rough surface, � = 90� s�1 0.52 1.41

ing so would have required use of a high-speed video cam-
era and cumbersome image analysis. Instead, the error asso-
ciated with each contact point was defined as the minimum
distance from the point to the object surface. The error was
also computed in a normalized form by dividing the absolute
error by the initial contact distance r0 for each whisk. Table 1
presents these results for each of the four experimental con-
ditions, each averaged over all three shapes. Consistent with
Figure 8, the rough surface condition decreases the overall ac-
curacy, but average error remains under 1 mm (2.39%). Table 1
also confirms that whisking at 90� s�1 does not significantly
affect the results.

5. Discussion

The sweeping algorithm presented here has been shown to be
highly accurate for three distinct two-dimensional shapes. In
all three cases, the entire profile shape was reliably extracted
with only 12 whisks, clearly providing significant additional
shape information beyond the initial contact point alone. In ad-
dition, visual inspection showed that the sequence of extracted
points closely matched the actual movement of the whisker
along the object. In several cases, the whisker remained in dis-
crete contact with a corner during an entire whisk (zero longi-
tudinal slip). As expected, the estimated contact points would
remain in the same region, usually within a range of 2 mm
from the first contact point for the smooth objects (but up to
about 5 mm for rough objects). In other cases, significant slip
along the object occurred, whereupon the estimated contact
point would accurately align with the perimeter of the object.

The sweeping algorithm described here requires reasonable
choices to be made for Mthresh, �0 and d�. Here Mthresh should
be as close to zero as possible while ensuring it is not exceeded
as a result of dynamic effects and sensor noise. A good rule of
thumb is to make �0 as small as possible, while still ensuring a
strong enough torque signal to allow accurate distance extrac-
tion when contact occurs near the whisker tip. The choice of
d� is predicated on a tradeoff between accuracy and compu-
tational efficiency, as well as the desired number of extracted

points. Efficiency will generally be a negligible issue, as each
iteration involves only evaluating the algebraic equations (9)–
(12). However, decreasing d� below 1� typically has an in-
significant effect on the accuracy of the algorithm. (In fact,
reasonable accuracy can be obtained for d� as large as �5�.)
Therefore, in general practice, a choice of d� is determined by
the desired number of extracted contact points.

The assumptions inherent in the sweeping algorithm de-
serve careful consideration.

� Friction. Although the assumption of zero friction is not
technically valid if the surface is rough, we have shown
that the sweeping algorithm produces good results even
in the relatively extreme case of 120 grit sandpaper. The
model has thus been empirically shown to work in the
presence of friction, albeit with somewhat reduced ac-
curacy.

� Tip contact. For distance extraction with (1), tip con-
tact is easily handled by setting an upper threshold on r0

equal to the length of the whisker (Solomon and Hart-
mann 2006). However, the assumption that the contact
force acts normal to the whisker at the contact point can
be inaccurate if the whisker touches the object at the tip,
and also the tip can slide along the object, invalidating
(4). We implemented a modified version of the sweep-
ing algorithm for the case of tip contact, setting dsi to
zero (since tip contact generally persists during a whisk),
and using a numerical technique to estimate 
�i based on
the moment Mi	1. Unsatisfactory results were obtained.
Therefore, in practice, the sweeping algorithm should
be halted for whisks in which, during the initial “tap”
of the whisker on the object, r0 is found to be equal to
the whisker length, and the location of the whisker base
moved closer to ensure contact along the whisker length.

� Lateral slip. The sweeping algorithm explicitly assumes
that no lateral slip occurs� any significant amount is
likely to be highly detrimental. Note that this does not
necessarily require that the surface be oriented exactly
perpendicular to the plane of rotation, as friction can
prevent lateral slip in some cases (Solomon and Hart-
mann 2008). When lateral slip does occur, it can easily
be sensed through measurement of the orthogonal (y)
component of moment, in which case either the sweep-
ing algorithm could be halted until the next whisk, or
the plane of rotation could be actively adjusted to pre-
vent lateral slip from occurring (Kaneko et al. 1998�
Clements and Rahn 2006).

� Concave object features. Two situations must be ad-
dressed.

1. If the whisker contacts the object at two dis-
crete points during its initial rotation by �0, then
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Fig. 9. Possible problems associated with concave object fea-
tures. In the statistically unlikely event that the whisker con-
tacts the object at two discrete points during its initial rota-
tion �0 (top), the estimated contact point (white circle) will
reside somewhere between the two actual contact points. An-
other possible problem may occur when a concave object fea-
ture causes the whisker to contact the object at two discrete
points during the sweep (bottom), in which case extracted con-
tact points (black dots) will align the region between the actual
contact points.

distance extraction using (1) can be affected, as
shown in the top part of Figure 9. However, this
situation is statistically unlikely to occur because
it would require two points along the object to pre-
cisely align with the whisker upon contact. Re-
gardless, it is relevant to note that our empirical
results demonstrated that the sweeping algorithm
is able to quickly “damp out” error associated with
the use of (1). To show this, we processed the ex-
perimental data, except that r0 was set to random
values between zero and the whisker length, in-
stead of using (1). After an additional rotation of
about 5–10� (depending on the error in r0), subse-
quent extracted points aligned accurately along the
objects. This inherent robustness can be explained
by the iterative nature of the algorithm. When r0

is inaccurate, the �dsi � component of (9) (see also
(6)) will cause the estimated contact point location
to move increasingly close to actual contact point
following each iteration.

2. Concave regions of an object might be omitted
(“swept over”) as the whisker rotates through a
large angle, in which case the sweeping algorithm
would effectively place contact points along the
line connecting those parts of the object that were
actually touched, as shown in the bottom part Fig-
ure 9. In order to subsequently discover such a con-
cave feature, the base of the whisker would have
to be translated to a new location such that the

whisker tip crosses the line of false contact points,
thus indicating their inaccuracy and allowing them
to be discarded. Note that for a straight whisker, it
is geometrically possible to sample concave object
features only through contact at the whisker tip.

� Non-discrete object contact. During a whisker sweep,
the whisker may come into contact with the object along
a continuous segment of its length, inconsistent with the
discrete contact model. This situation clearly occurred
in the experiments for both the hexagon and square ob-
jects, yet it did not adversely affect the results. This form
of robustness is a result of the mechanical nature of seg-
mental object contact, which produces a moment at the
base equivalent to discrete object contact at some point
within the same segment. Thus, in such cases, the algo-
rithm will effectively determine the contact point to be
somewhere along the contact segment.

� Object compliance. If the object is not rigid relative to
the stiffness of the robotic whisker(s), computation of
r0 using (1) and the 
�i components using (4) during a
sweep may be inaccurate. A method for finding r0 for
a compliant object is offered by Kaneko et al. (1998)
which involves whisking at two different distances. Al-
though further research would be required to accom-
modate the sweeping algorithm, the most straightfor-
ward solution is to use thin, flexible robotic whiskers so
that the compliance of most objects is negligible com-
pared with that of the whisker. The benefit of decreasing
whisker stiffness must be balanced against the drawback
of decreasing the torques that will be sensed. As a rule
of thumb, the stiffness should be large enough to ensure
a sufficient reaction torque after rotating by �0 to allow
accurate use of (1) in the case that the whisker touches
the object near its tip. Note that I � 1

4r4, so that halv-
ing the whisker diameter will decrease I (i.e. stiffness)
by a factor of 16.

� Moving objects. As the algorithm assumes that the ob-
ject is static, any change in sensed moment due to move-
ment of the object will be wrongly interpreted. The most
straightforward solution is to whisk at a speed which
nullifies object movement. As real rat whiskers have
very little mass, they move very rapidly (up to 1500�
s�1 (Towal and Hartmann 2008)).

It is interesting to compare the sweeping algorithm devel-
oped here with that implemented by Scholz and Rahn (2004).
Scholz and Rahn use a hub load cell and a non-linear elas-
tica model to numerically integrate the shape of the whisker at
each time step. One advantage of this approach is that it does
not lose accuracy when contact occurs at the tip. Another pos-
sible advantage is that active movement of the whisker is not
explicitly required� in other words, the base angle, force and
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torque history over a given sweep are not needed to estimate a
given contact point. However, there are two drawbacks to their
method. The primary drawback is that it requires a sensor that
can measure two components of force in addition to moment.
These load-cell sensors are typically prohibitively bulky and
expensive for use in an array of whiskers. In contrast, the parts
to construct the torque sensor used in this study only cost about
US$20 (four strain gages, only two of which were used)� see
Solomon and Hartmann (2008). The second drawback is that
the technique involved numerically computing the shape of the
whisker each time step, which can require significant compu-
tational resources to run in real time for multiple whiskers. In
contrast, the algorithm presented here computes contact points
by iteratively inferring position changes based on small suc-
cessive changes in whisker angle � and sensed moment M .
This makes it extremely efficient, involving only the evalua-
tion of the algebraic equations (9)–(12) on each iteration. It
should be noted, however, that the computational efficiency of
Scholz and Rahn’s method could be improved by pre-solving
their elastica model for a range of deflections, and storing the
results in a three-dimensional lookup table, which could then
be interpolated to compute each contact point.

Although our method has been derived for cylindrically-
shaped whiskers, it is not limited to this case. Real rat whiskers
are tapered (roughly linearly with respect to arc length) and
curved (Solomon and Hartmann 2006), and it is interesting to
ask whether the sweeping algorithm could work for a whisker
with these geometrical characteristics. Theoretically, the an-
swer is yes. Equation (1) would simply be replaced with the
distance extraction equation for a curved, conical whisker
(Solomon and Hartmann 2006). However, � , M� and dM/ds
would now also depend on the arc length contact distance sF

in addition to � . As a result, (5), (10) and (11) would become
functions of two variables, � and sF . These functions could be
generated using the numerical method in Appendix A.2 and
stored in a look-up table (or any convenient function approxi-
mator, e.g. two-variable polynomial, radial basis function net-
work, or multilayer perceptron). Equations (8) and (9) would
also change in accordance with (5).

Future research is needed to develop a strategy for dealing
with tip contact. Another interesting possibility is to expand
the algorithm to allow continued estimation of contact point
location during lateral slip. Other recent work from our labora-
tory has addressed the problem of accurate distance extraction
in the presence of lateral slip (Solomon and Hartmann 2008),
so much of the puzzle has already been addressed. The devel-
opment of such a three-dimensional version of the sweeping
algorithm described here that incorporates a two-dimensional
torque sensor would be of great benefit to the ultimate goal
of quick and precise object feature extraction with a robotic
whisker array.

6. Conclusion

In this paper we have derived and demonstrated an effective,
efficient and easy-to-implement method for obtaining object
profile shape information over a single whisk with a robotic
whisker. As force does not need to be measured, the physical
implementation of the algorithm requires only small, inexpen-
sive torque sensors (e.g. strain gages). This makes it easy to
implement on a highly parallel array of robotic whiskers. The
algorithm was shown to be robust to sensor noise, object fric-
tion and segmental contact.

The extraction of a continuous segment of an object’s
profile with a single whisker/whisk is also somewhat biolog-
ically plausible. For example, a rat could extract the contour
of an object from torque information measured at the base of
each of its tapered whiskers. In fact, the taper of the whisker
would serve to increase the length of the object contour swept
over, as the whisker would increasingly tend to bend in on it-
self for contact near the tip. Although “sensor noise” would be
a significant limiting factor in the rat, it is possible that basic
curvature information could be extracted.
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Appendix

A.1. Derivation of the Relationship Between � and �

Application of linear elasticity to small angle deflections of
a cantilever beam shows that the deflected shape owing to a
concentrated end load F can be expressed as

y�x� �
�

F

6E I

��
3x2dx � x3

	
(13)

and the slope is given by

dy

dx
�
�

F

6E I

��
6xdx � 3x2

	
� (14)

Evaluating (13) and (14) at x � dx , we have

y�dx� � dy �
�

Fd3
x

3E I

�
(15)

and
dy

dx


dx

�
�

Fd2
x

2E I

�
� (16)

We also know that

tan � �
��dy

dx

�
and tan � � �dy

dx


dx

�
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Using these equations along with (15) and (16) gives us

tan � �
��Fd2

x

3E I

�
(17)

and

tan � �
��Fd2

x

2E I

�
� (18)

For small angles, tan � � � and tan � � � , leading to Equa-
tion (5):

� � 3

2
��

A.2. Determining the Shape of a Cantilever Beam for Large
Deflections

The problem of determining the shape of a cantilever beam
subjected to a point load at the end is one of the oldest
in the study of bending beams, having been investigated by
Bernoulli and Euler in the 1700s. Precise solutions can be ob-
tained through the use of elliptic functions (Landau and Lif-
shitz 1986), and recent methods allow the determination of
all equilibrium shapes, given material and geometric proper-
ties and end load (Navee and Elling 1992� Batista and Kosel
2005). Here, we are interested only in determining a small
subset of possible equilibrium shapes, namely those that can
be expected to arise during a whisker rotation of reasonable
amplitude against on object. It is assumed that dynamic ef-
fects are negligible, allowing use of a standard elastic model
of beam bending.

The Euler–Bernoulli beam equation can be written as

d� � M

E I
� (19)

where d� represents change in curvature, and can vary with M,
E and I along the length of the beam. Computation of the shape
of a cantilever beam for an end load of arbitrary magnitude
and direction can be accomplished by dividing the beam into
n nodes and writing (19) in the following form:

d� i � d�i

ds
� 
ri � F

Ei Ii
(20)

where � is the tangent angle of the beam, s is the arc length
coordinate, 
r is a moment arm, and 
F is the end load. Sub-
script i refers to the node number, which we define as 1 at the
location of F and n at the beam base. By starting at node 1 and
repeatedly calculating the location of the next node up until
n, Equation (20) provides an accurate, efficient, compact and
easy-to-implement way of computing the shape of a beam due
to an end load. Note that the generality of this method allows
arbitrary inclination of the force, arbitrary variation of E and I
along the length, and arbitrary inherent curvature of the beam
(so long as the radius of curvature is at least 10 times the beam

Fig. 10. Depiction of the numerical modeling process. The
deflected shape of a cantilever beam with a concentrated end
load F acting perpendicular to the beam’s longitudinal axis can
be found using a simple finite difference procedure depicted
here. Only 30 beam nodes are shown for clarity, but a much
larger number should be used for highly accurate results.

depth (i.e. the beam diameter in this case) at all nodes (Young
and Budynas 2001)).

In this application the beam is straight and has constant E
and I� therefore (20) is particularly straightforward to imple-
ment using a finite difference method. We assume that the fric-
tion between object and beam is negligible, making the force
perpendicular to the beam’s longitudinal axis at the contact
point. Figure 10 depicts the process of computing the beam
shape for a force F. The procedure starts by placing node 1 at
(0, 0) and node 2 at (�ds� 0), where ds � 1
 �n � 1� such that
F acts at arc length sF � 1 along the beam and the initial tan-
gent angle �1 � 0. Successive node locations are then found
by looping through the following equations, starting at i � 2
and ending at i � n � 1:

� i�1 � xi � F� (21)

�i � �i�1 � � i�1 � ds� (22)

xi	1 � xi � ds � cos�i � (23)

yi	1 � yi � ds � sin�i � (24)

Once the beam shape is computed, its base point is trans-
lated to the origin, and it is rotated about its base by angle
��n�1 to orient it as shown in Figure 2. Note that EI has been
assumed to be 1, meaning that F is effectively normalized by
s2

F
E I . Also note that (20) could alternatively be easily im-
plemented using a numerical integration algorithm, such as the
Runge–Kutta method.
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Fig. 11. A continuum of beam shapes. The shapes were com-
puted by using the method depicted in Figure 10, up to �max �
45�. Each beam length was normalized such that dx � 1.

Repeating the above process for a succession of forces
ranging from zero to Fmax and storing the resulting beam
shapes in a two-dimensional matrix amounts to pre-solving for
all equilibrium shapes up to some maximum value of � , �max

(which depends on Fmax). Figure 11 shows these results for
Fmax � 2�5, which leads to �max � 45�. A total of 10,000
nodes were used for high accuracy in computing the shapes,
but only a subset of these points need to be stored in the look-
up table because the underlying curves are smooth. Similarly,
the beam changes in a very continuous manner as F increases,
necessitating that only a relatively small number of shapes be
stored. A table of size 100� 100 provides excellent accuracy.

In general, one may wish to obtain the equilibrium shape,
curvature or moment at the base, and contact angle � based
on various methods of query. In particular, (dx � dy), (r� � ), and
(sF � F� E I ), where sF is the actual location of the force, all
independently provide sufficient information to reconstruct the
entire shape of the beam by interpolating the look-up table and
scaling the units to match those provided in the query.

A.3. Derivation of Translational Version of Sweeping
Algorithm

The first modification involves the radial distance extraction
component of the algorithm to reflect the translational move-
ment of the whisker. Defining �0 as the pushing distance,
the translational analog of (1) can be found by substituting
�0 � �0
r0 and solving for r0, yielding

r0 �
�

3E I
�0

M0
� (25)

Recalling (3)�
� dx�i	1

dy�i	1

�
� �

�
� dx�i

dy�i

�
�	 
�i 	 dsi �

again the task is to find expressions for 
�i and dsi . The nominal
deflection component 
�i is simply opposite to the translational
movement of the whisker:


�i �
�
� 0

��i

�
� � (26)

The longitudinal slip component dsi is not influenced by the
change from rotational whisker movement to translational, and
remains the same. Equation (9) now becomes�

� dx�i	1

dy�i	1

�
� �

�
� dx�i

dy�i

�
�	

�
� 0

��i

�
�

	 �
Mi	1 � M��i

	 � ds

dMi

�
�
� � cos

�
3
2� i
	

sin
�

3
2� i
	

�
� � (27)
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